Из пушки на Луну?

We use cookies. Read the Privacy and Cookie Policy

Из пушки на Луну?

«…Раздался ужасный, неслыханный, невероятный взрыв! Невозможно передать его силу — он покрыл бы самый оглушительный гром и даже грохот извержения вулкана. Из недр земли взвился гигантский сноп огня, точно из кратера вулкана. Земля содрогнулась, и вряд ли кому из зрителей удалось в это мгновение усмотреть снаряд, победоносно прорезавший воздух в вихре дыма и огня…»

Так описал Жюль Верн выстрел гигантской «Колумбиады» в своем знаменитом романе «С Земли на Луну», увидевшем свет в 1865 году. Талантливый литератор предугадал многие особенности космического полета. Например, то, что его большая часть будет проходить в невесомости. И приводнился снаряд его пушки в том же районе Атлантики, где многие десятилетия спустя делали то же американские астронавты, возвращаясь с Селены…

И потому, наверное, с той поры изобретателей во всем мире не оставляет желание создать подобную установку на самом деле. Хотя за прошедшие двести с лишним лет с момента публикации романа идея претерпела изрядные изменения.

Так, мюнхенский астроном Макс Вальер, ознакомившись с идеей Жюля Верна, решил, что людей выстреливать из пушки, наверное, не получится. А потому предложил послать на Луну лишь ядро диаметром 1,2 м, вольфрамовая оболочка которого должна быть заполнена свинцом для лучшей баллистики. Металлический ствол пушки (900 м в длину) укреплялся с наружной стороны бетонной «рубашкой». Саму пушку предлагалось разместить где-нибудь на горной вершине высотой не менее 5 км в экваториальной зоне, а для лучшего разгона ядра перед выстрелом из дула следовало выкачать весь воздух.

Одна из идей Жюля Верна о полете на Луну. Книжная иллюстрация

Похожий вариант старта с планеты предлагали и два французских автора — Ж. Фор и К. Граффиньи. Причем для разгона снаряда до возможно большей скорости они советовали использовать наряду с основным зарядом еще и дополнительные побочные, располагавшиеся в боковых камерах и взрывавшиеся последовательно по мере того, как снаряд проскакивал мимо них. Интересно, что позднее, во время Второй мировой войны, аналогичный принцип выталкивания снаряда из ствола гитлеровские конструкторы попытались использовать на практике в многокамерной пушке «Фау-3».

Впрочем, посчитав, что и при постепенном разгоне старт все-таки получится с очень большими перегрузками, в своем следующем проекте те же авторы решили использовать для посылки снаряда на Луну силы природы. И решили поместить 600-килограммовый межпланетный снаряд… в кратер вулкана, который при извержении и должен был выбросить посылку в космос.

Наконец, еще один проект пальбы космонавтами из пушки предложили американцы в 1924 году. Длина вертикально установленной пушки должна была, по их мнению, составить 5,5 км, а снаряд в стволе разгонялся до 11,2 км/с — то есть до второй космической скорости. Пассажиров же от перегрузок должна была предохранить система пружин и гидравлических цилиндров.

Впрочем, ни один из этих проектов не был осуществлен на практике. Человечество пошло другой дорогой — грузы и людей в космос стали вывозить с помощью ракет.

Однако, как известно, ракеты имеют свои недостатки. В самом деле, для того, чтобы сегодня отправить на орбиту более-менее крупный спутник, приходится сжигать огромное количество достаточно дорогого топлива. В итоге каждый запуск обходится в десятки, а то и сотни миллионов долларов.

Больше всего горючего расходует первая ступень. И потому для облегчения и удешевления взлета Артур Грэм, руководитель отдела перспективных разработок компании Babcock & Wilcox, производящей паровые котлы с 1867 года, вместе со своим коллегой, инженером Чарльзом Смитом предложил осуществлять старт ракеты с помощью… паровоза.

Нет, он вовсе не собирался запускать паровоз по рельсам с сумасшедшей скоростью, чтобы затем из следовавшего следом вагона — пусковой установки — запускать ракету. Грэм, занимавшийся разработкой высокотемпературных котлов, работающих при температуре выше 374 °C и давлении выше 220 атмосфер, предлагал использовать пар как «толкатель» первой ступени ракеты-носителя.

Расчеты показали, что при температуре в 550 °C скорость распространения звука в водяном паре составляет порядка 720 м/с, а при 1650 °C — 1030 м/с. Казалось бы, уже неплохо, если забыть, что в конечном итоге ракета для выхода на орбиту должна набрать скорость 7,9 км/с.

Тогда Грэм со Смитом в марте 1961 года подали в НАСА описание «пароводородного ускорителя для запуска космических аппаратов». И — интересное дело! — им в 1964 году был даже выдан США патент за номером 3131597 на «метод и аппарат для запуска ракет».

Инженеры решили использовать двухступенчатую схему. На первом этапе полученный пар сжимал и таким образом разогревал водород, скорость звука в котором существенно выше (при 1650 °C — более 3 км/с). А уже водород должен был производить непосредственный разгон космического аппарата.

Аппарат для запуска должен был представлять собой исполинскую суперпушку, ствол которой имел диаметр 7 м и длину 3000 м. Используя идею Жюля Вера, изобретатели предлагали разместить его внутри горы вертикально. Для доступа к «казенной части» гигантского орудия в основании горы пробивались туннели. Там же располагался завод для получения водорода из природного газа и гигантский парогенератор.

Космический аппарат предлагалось устанавливать на платформу, служившую поддоном при разгоне в стволе. Чтобы уменьшить сопротивление разгону, из ствола откачивался воздух, а дульный срез полагалось герметизировать специальной диафрагмой.

Стоимость строительства космической пушки оценивалась в 270 млн долларов. Зато потом пушка может «стрелять» раз в четыре дня, уменьшив стоимость первой ступени ракеты Saturn с 5 млн долларов до 100 тысяч. При этом, согласно расчету, стоимость выведения 1 кг полезной нагрузки на орбиту падает с 2500 долларов до 400.

Для доказательства работоспособности проекта авторы предложили построить макет в масштабе 1: 10 в одной из заброшенных шахт. Однако руководители NASA заколебались: вложив огромные деньги в разработку традиционных ракет, агентство не могло позволить себе потратить еще 270 млн долларов на альтернативную технологию. Кроме того, громадные перегрузки, явно делают невозможным использование суперпушки в пилотируемой космической программе.

Однако времена меняются, и ныне все большее количество специалистов начинает полагать, что присутствие людей в космосе не так уж и необходимо. Более 90 % всех операций дешевле и проще выполнить с помощью автоматов.

«А потому идея Жюля Верна вполне может быть осуществлена в наши дни, — уверяют специалисты НАСА. — Только пушка должна быть не простой, а электромагнитной…»

По идее, такой электромагнитный ускоритель не представляет собой ничего чересчур сложного. Нужно сделать нечто вроде гигантской катушки-соленоида, подобной той, с помощью которой в школьном кабине физики показывают такой «фокус». Внутрь соленоида вкладывают металлический сердечник. А когда на обмотки подают импульс электрического тока, то сердечник под воздействием силы Лоренца получает ускорение и вылетает из катушки, словно снаряд.

Однако вся загвоздка заключается в том, что до сих пор не удалось решить все технические проблемы, связанные с эксплуатацией подобных ускорителей. В частности, до сих пор нет достаточно мощных конденсаторов, которые бы позволили «снаряду» такой пушки достичь первой космической скорости.

Поэтому задача решается поэтапно. Американцы сначала хотят создать электромагнитный стартовый ускоритель, который бы разгонял ракету до 900 км/ч и только с этого момента включались бы ее собственные двигатели. Разработкой подобной технологии вывода полезного груза на орбиту сейчас занимаются ученые и техники Центра космических исследований имени Маршалла, расположенного в г. Хантсвилле, штат Алабама.

Они сконструировали рабочую модель 16-метрового магнитного ускорителя и планируют провести испытания с 14-килограммовой болванкой. Если они окажутся удачными, то в будущем предполагается построить уже 130-метровую «пушку».

И хотя взнос пушки в разгон на первых порах будет мизерный — около 3 процентов от общей тяги, цена вывода груза в космос, как утверждают американцы, может быть снижена в 100 раз! А все потому, что электромагнитный ускоритель будет работать на самом тяжелом участке пути, когда нужно разогнать огромную массу.

Данный текст является ознакомительным фрагментом.