7. Устройства для блокировки загрузочных люков
7. Устройства для блокировки загрузочных люков
В целях безопасности для пользователя в СМА широко применяются блокировочные устройства и специальные термозамки (в дальнейшем — просто замки). Все эти устройства обеспечивают фиксацию загрузочного люка или верхней крышки СМА во время вращения барабана. В простейшем случае блокировочное устройство представляет собой электромагнит.
Защелки, запирающие люк СМА, все время удерживаются пружиной. При включении СМА в сеть и при нажатии кнопки открывания люка, защелка втягивается внутрь катушки электромагнита, и становится возможным открыть загрузочный люк. Гораздо большее распространение получили замки с термоэлементами. На рис. 7.1 представлено несколько типов термозамков.
Рис. 7.1. Некоторые типы блокировочных термозамков
Основу их конструкции составляют специальные термоэлементы и биметаллическая пластина (одна или две). Термоэлемент представляет собой полупроводниковый резистор с положительным температурным коэффициентом. Этот резистор резко увеличивает свое сопротивление, когда превышена его некоторая характеристическая температура. Подобные резисторы имеют название: РТС-термистор (Positive Temperature Coefficient), а комбинация термоэлемента с биметаллической пластиной называется РТС+биметалл.
Конструкций подобных замков — великое множество, но мы подробно рассмотрим принцип действия и устройство самых распространенных.
На рис. 7.2 показано внутреннее устройство термозамков с плоским РТС-термистором.
Рис. 7.2. Типы замков с плоским термоэлементом
После закрывания крышки или загрузочного люка СМА на выводы замка подается напряжение питания (в данном случае 220 В). В течение нескольких секунд термистор нагревается сам и нагревает биметаллическую пластину, к которой он прижимается одной из контактных пружин. Биметаллическая пластина при нагреве изгибается, контакты замыкаются и остаются в таком положении в течение всего времени работы СМА, пропуская напряжение питания на электросхему СМА. Также при замыкании контактов замка попутно приводится в действие запорный механизм, фиксирующий крышку или дверцу загрузочного люка.
По окончании программы стирки напряжение питания с замка снимается, термоэлемент и биметаллическая пластина остывают (примерно 2–4 минуты), и становится возможным открыть люк.
Электрическая схема таких замков проста и показана на рис. 7.3.
Рис. 7.3. Схема термозамка
Как видим, вывод N — общий, таким образом, при подаче напряжения питания на выводы N и L замка замыкается пусковой контакт и напряжение питания с вывода С начинает поступать на остальную часть электросхемы СМА. РТС-термистор может иметь и другую форму — например, круглую, в виде таблетки. Замок с подобным термистором показан на рис. 7.4.
Рис. 7.4. Тип замка с круглым термоэлементом в виде таблетки
Многие замки имеют дополнительные пары контактов, которые обеспечивают полную защиту от включения СМА с открытой крышкой.
Также и количество термоэлементов может быть больше — например, на рис. 7.5 показан замок с двумя круглыми термоэлементами и с дополнительными контактами.
Рис. 7.5. Замок с двумя термоэлементами
Рассмотрим еще несколько типов замков более сложных конструкций. На рис. 7.6 показаны два замка также с круглыми термоэлементами.
Рис. 7.6. Типы замков с перекидывающимися контактами и с круглым термоэлементом
В качестве исполнительных в этих замках применены перекидывающиеся контакты — такой же конструкции, как в датчиках давления. Контакты переключаются специальным коромыслом на шарнире. Принцип действия коромысла показан на рис. 7.7: при подаче напряжения на термоэлемент нагреваются также биметаллические пластины сверху и снизу «таблетки», вследствие чего коромысло переключает контакты.
Рис. 7.7. Принцип действия термозамка с круглым термоэлементом в виде таблетки
И наконец, рассмотрим еще один интересный замок — он комбинированного типа: в нем и РТС+биметалл и электромагнит. На рис. 7.8 он также показан в разобранном виде.
Рис. 7.8. Термозамок с электромагнитом
Этот замок содержит дополнительный РТС-резистор, который ограничивает ток через катушку электромагнита. На рис. 7.9 приведен чертеж этого замка.
Рис. 7.9. Чертеж термозамка с электромагнитом
При закрывании крышки СМА замок получает импульс от электронного модуля через контакт 3.
Импульс подается на электромагнит через РТС-резистор. Подвижной механизм из рычага и кулачка вращает храповую зубчатую шестерню, которая приводит в действие запирающий механизм замка. При открывании крышки замок получает от электронного модуля два импульса. При этом подвижный механизм делает два движения, и после этого крышку можно открыть сразу. Электрическая схема комбинированного замка приведена на рис. 7.10.
Рис. 7.10. Электрическая схема термозамка с электромагнитом
Еще один замок показан на рис. 7.11. Этот замок с электромагнитом и также управляется импульсами с электронного модуля.
Рис. 7.11. Разновидность электромагнитного замка
Существуют также конструкции замков, которые не содержат РТС-термистора. Вместо него служит обмотка из высокоомного провода. При подаче напряжения питания на эту обмотку, она нагревается и попутно нагревает биметаллическую пластину, на которую и намотана. Эта пластина изгибается, замыкает соответствующие контакты и выдвигает упор, блокирующий крышку люка. На рис. 7.12 замок показан со снятой крышкой.
Рис. 7.12. Термозамок с обмоткой на биметалле — замок с низковольтным питанием
Обратим внимание: на крышке надпись — AC250V. Но вопреки этой надписи данный замок отличается низковольтным питанием!
Дело в том, что в электросхеме СМА этот замок включен последовательно с обмоткой сливного насоса-помпы, поэтому основная часть напряжения падает на обмотке насоса, а оставшихся 10–15 В вполне достаточно для разогрева биметаллического контакта замка. Нетрудно догадаться, что подобный замок действует только во время работы сливного насоса, т. е. во время промежуточных и окончательного отжимов.
Электросхема СМА с таким замком есть в приложении.
А теперь, в качестве исторической справки, познакомимся еще с одним блокировочным устройством. Это замок, имеющий сразу два вида блокировок двери загрузочного люка: пневматическую и механическую блокировки. Замок показан на рис. 7.13.
Рис. 7.13. Замок с двумя видами блокировок
Эта часть смонтирована на внутренней стороне загрузочного люка СМА, как и термозамки. На этой части установлен и основной микровыключатель. При закрывании дверцы люка этот микровыключатель подает напряжение питания на электросхему СМА. При незакрытой дверце СМА включить нельзя. При наполнении бака водой в основной части замка включается система гидроблокировки. Устроена эта система точно так, как и нижняя часть пневматических переключателей. Это небольшого диаметра пластмассовый корпус, в котором есть резиновая диафрагма (мембрана). Этот корпус с мембраной соединен параллельно со шлангом давления. При заливе воды в корпусе под мембраной повышается давление — диафрагма выгибается, и из верхней части корпуса выдвигается блокировочный штырь. Пока в баке есть вода, этот штырь блокирует непосредственно с защелкой дверцу загрузочного люка. Вторая часть замка смонтирована на ведущем моторе, и действие ее показано на рис. 7.14.
Рис. 7.14. Принцип действия механической блокировки
Принцип действия системы прост; при попытке открыть люк при вращающемся моторе «клювик» на шарнире откидывается в направлении вращения шкива мотора, и в этом случае тросик, который соединяет обе части замка, не натягивается и замок остается заблокированным. Если открывание двери люка происходит при остановленном моторе, то в этом случае «клювик» упирается в ремень, тросик натягивается и разблокирует замок, дверца люка открывается. Как видим, замок довольно сложен, содержит много деталей и требует регулировки зазора между ремнем и «клювиком». Производители сравнительно недавно отказались от такого замка (а устанавливали его больше десяти лет в СМА марок General Electric, Holpoint и некоторых других). По-видимому, дело было в том, что при неисправности сливного наcoca или засорении системы слива в баке оставалась вода и без помощи специалиста становилось невозможным открыть загрузочный люк.
Кроме того, с течением времени стачивался «клювик», что также препятствовало открыванию двери. Кстати, все блокировки можно было легко отключить. Можно было пережать шланг давления, идущий к мембране с выдвижным штырем.
Либо можно было снять рычаг с подвижным «клювиком» и двумя планками на винтах зажать тросик так, чтобы исключить его перемещение, т. е. просто обеспечить постоянно натянутое его положение.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
6.5. Устройства оперативной блокировки
6.5. Устройства оперативной блокировки Блокировка электротехнического устройства (блокирование) — это часть электротехнического изделия (устройства), предназначенная для предотвращения или ограничения выполнения операций одними частями изделия при определенных
2.2. Буксирные устройства
2.2. Буксирные устройства Буксирное устройство надводного корабля предназначено для его буксировки и буксировки им в море однотипных кораблей, а также кораблей меньшего водоизмещения. Буксирное устройство подводной лодки предназначено для ее буксировки в гаванях и на
4.3. Универсальный способ блокировки
4.3. Универсальный способ блокировки Некоего универсального способа подключения обманки-имитатора не существует, поэтому и важно знать – как именно подключены провода (цвета и прочие особенности монтажа). Утверждение монтажников о том, что при включенной системе этого
3. Помехоподавляющие устройства
3. Помехоподавляющие устройства Любая СМА при работе производит электрические помехи, возникающие при переключении различных контактов, при работе коллекторных моторов, при включении и выключении клапанов подачи воды. Для того чтобы снизить уровень электрических
13. Уплотняющие устройства
13. Уплотняющие устройства Для того чтобы в узлы вращения СМА не попадали вода или моющий раствор, применяются разнообразные уплотняющие фасонные резиновые манжеты — сальники либо специальные вкладыши из графитированного пластика в сочетании с резиновыми манжетами.
5.5. Компенсирующие устройства
5.5. Компенсирующие устройства Компенсирующими устройствами называются установки, предназначенные для компенсации емкостной или индуктивной составляющей переменного тока. Обозначения типов КУ и реакторов приведены ниже. В качестве средств компенсации реактивной
7.4.1. Распределительные устройства
7.4.1. Распределительные устройства Показатели стоимости ОРУ 35-1150 кВ учитывают установленное оборудование (выключатель, разъединитель, трансформаторы тока и напряжения, разрядники); панели управления, защиты и автоматики, установленные в ОПУ, относящиеся к ОРУ или ячейке;
Периферийные устройства
Периферийные устройства Компьютер очень быстро завоевал признание и применяется почти повсеместно. Для выполнения различных задач создано множество периферийных устройств, к которым, в первую очередь, относятся принтер, сканер, модем (факс-модем), внешние носители
СООРУЖЕНИЯ И УСТРОЙСТВА
СООРУЖЕНИЯ И УСТРОЙСТВА ГЛАВА 2 ОБЩИЕ ПОЛОЖЕНИЯ 2.1. Сооружения и устройства метрополитена должны содержаться в исправном состоянии и обеспечивать пропуск поездов с наибольшими установленными скоростями.Предупреждение появления каких-либо неисправностей и
9. Противоугонные устройства
9. Противоугонные устройства Оставляя скутер в людном месте без присмотра, его владелец всегда рискует. Так уж повелось, что нечистых на руку людей привлекают эти маленькие и яркие машинки.Частое отсутствие каких-либо документов на скутер у владельца может породить