СЭМЮЭЛ ТОМАС КУН. (1922 - 1996)

We use cookies. Read the Privacy and Cookie Policy

СЭМЮЭЛ ТОМАС КУН. (1922 - 1996)

Т. Кун (Kuhn) - американский историк науки, один из представителей исторической школы в методологии и философии науки. Получив теоретико-физическое образование, он приобрел наибольшую известность благодаря своей монографии «Структура научных революций» (Чикаго, 1962), в которой раскрыл концепцию исторической динамики научного знания. В основе последней лежит представление о сути и взаимосвязи таких понятийных образований, как «нормальная наука», «парадигма», «кризис парадигмы нормальной науки», «научная революция» и другие. Некоторая неоднозначность понятия парадигмы вытекает из того, что, по Куну, это и теория, признанная научным сообществом, и правила (стандарты, образцы, примеры) научной деятельности, и «дисциплинарная матрица». Однако именно смена парадигм и представляет собой научную революцию. Подобный подход, несмотря па существующие критические возражения, получил в целом международное признание в рамках постпозитивистского этапа методологии и философии науки.

Основные работы: Copemican Revolution. Cambridge, 1957; Sources History of Quantum Physics. Philadelphia, 1967; Структура научных революций. ?., 1975, 1977, 2001; The Essential Tension. Selected Studies in Scientific Tradition and Change. Chicago;L., 1977.

B.H. Князев

Фрагменты даны по кн.:

Кун Т. Структура научных революций. М., 2001.

На пути к нормальной науке

В данном очерке термин «нормальная наука» означает исследование, прочно опирающееся на одно или несколько прошлых научных достижений — достижений, которые в течение некоторого времени признаются определенным научным сообществом как основа для его дальнейшей практической деятельности. В наши дни такие достижения излагаются, хотя и редко в их первоначальной форме, учебниками — элементарными или повышенного типа. Эти учебники разъясняют сущность принятой теории, иллюстрируют многие или все ее удачные применения и сравнивают эти применения с типичными наблюдениями и экспериментами. До того как подобные учебники стали общераспространенными, что произошло в начале XIX столетия (а для вновь формирующихся наук даже позднее), аналогичную функцию выполняли знаменитые классические труды ученых: «Физика» Аристотеля, «Альмагест» Птолемея, «Начала» и «Оптика» Ньютона, «Электричество» Франклина, «Химия» Лавуазье, «Геология» Лайеля и многие другие. Долгое время они неявно определяли правомерность проблем и методов исследования каждой области науки для последующих поколений ученых. Это было возможно благодаря двум существенным особенностям этих трудов. Их создание было в достаточной мере беспрецедентным, чтобы привлечь на длительное время группу сторонников из конкурирующих направлений научных исследований. В то же время они были достаточно открытыми, чтобы новые поколения ученых могли в их рамках найти для себя нерешенные проблемы любого вида. Достижения, обладающие двумя этими характеристиками, я буду называть далее «парадигмами», термином, тесно связанным с понятием «нормальной науки». Вводя этот термин, я имел в виду, что некоторые общепринятые примеры фактической практики научных исследований — примеры, которые включают закон, теорию, их практическое применение и необходимое оборудование, — все в совокупности дают нам модели, из которых возникают конкретные традиции научного исследования. Таковы традиции, которые историки науки описывают под рубриками «астрономия Птолемея (или Коперника)», «аристотелевская (или ньютонианская) динамика», «корпускулярная (или волновая) оптика» и так далее. Изучение парадигм, в том числе парадигм гораздо более специализированных, чем названные мною здесь в целях иллюстрации, является тем, что главным образом и подготавливает студента к членству в том или ином научном сообществе. Поскольку он присоединяется таким образом к людям, которые изучали основы их научной области на тех же самых конкретных моделях, его последующая практика в научном исследовании не часто будет обнаруживать резкое расхождение с фундаментальными принципами. Ученые, научная деятельность которых строится на основе одинаковых парадигм, опираются на одни и те же правила и стандарты научной практики. Эта общность установок и видимая согласованность, которую они обеспечивают, представляют собой предпосылки для нормальной науки, то есть для генезиса и преемственности в традиции того или иного направления исследования.

Поскольку в данном очерке понятие парадигмы будет часто заменять собой целый ряд знакомых терминов, необходимо особо остановиться на причинах введения этого понятия. Почему то или иное конкретное научное достижение как объект профессиональной приверженности первично по отношению к различным понятиям, законам, теориям и точкам зрения, которые могут быть абстрагированы из него? В каком смысле общепризнанная парадигма является основной единицей измерения для всех изучающих процесс развития науки? Причем эта единица как некоторое целое не может быть полностью сведена к логически атомарным компонентам, которые могли бы функционировать вместо данной парадигмы. Когда мы столкнемся с такими проблемами в V разделе, ответы на эти и подобные им вопросы окажутся основными для понимания как нормальной науки, так и связанного с ней понятия парадигмы. Однако это более абстрактное обсуждение будет зависеть от предварительного рассмотрения примеров нормальной деятельности в науке или функционирования парадигм. В частности, оба эти связанные друг с другом понятия могут быть прояснены с учетом того, что возможен вид научного исследования без парадигм или по крайней мере без столь определенных и обязательных парадигм, как те, которые были названы выше. Формирование парадигмы и появление на ее основе более эзотерического типа исследования является признаком зрелости развития любой научной дисциплины. (С. 34-36)

Природа нормальной науки

Какова же тогда природа более профессионального и эзотерического исследования, которое становится возможным после принятия группой ученых единой парадигмы? Если парадигма представляет собой работу, которая сделана однажды и для всех, то, спрашивается, какие проблемы она оставляет для последующего решения данной группе? Эти вопросы будут представляться тем более безотлагательными, если мы укажем, в каком отношении использованные нами до сих пор термины могут привести к недоразумению. В своем установившемся употреблении понятие парадигмы означает принятую модель или образец; именно этот аспект значения слова «парадигма» за неимением лучшего позволяет мне использовать его здесь. Но, как вскоре будет выяснено, смысл слов «модель» и «образец», подразумевающих соответствие объекту, не полностью покрывает определение парадигмы. В грамматике, например, «ашо, amas, amat» (люблю, любишь, любит (лат.). — Ред.) есть парадигма, поскольку эту модель можно использовать как образец, по которому спрягается большое число латинских глаголов: например, таким же образом можно образовать формы «laudo, laudas, laudat» (хвалю, хвалишь, хвалит (лат.). — Ред.) и т.д. В этом стандартном применении парадигма функционирует в качестве разрешения на копирование примеров, каждый из которых может в принципе ее заменить. В науке, с другой стороны, парадигма редко является объектом копирования. Вместо этого, подобно принятому судом решению в рамках общего закона, она представляет собой объект для дальнейшей разработки и конкретизации в новых или более трудных условиях.

Чтобы увидеть, как это оказывается возможным, нам следует представить, насколько ограниченной и по охвату и по точности может быть иногда парадигма в момент своего появления. Парадигмы приобретают свой статус потому, что их использование приводит к успеху скорее, чем применение конкурирующих с ними способов решения некоторых проблем, которые исследовательская группа признает в качестве наиболее остро стоящих. Однако успех измеряется не полной удачей в решении одной проблемы и не значительной продуктивностью в решении большого числа проблем. Успех парадигмы, будь то аристотелевский анализ движения, расчеты положения планет у Птолемея, применение весов Лавуазье или математическое описание электромагнитного поля Максвеллом, вначале представляет собой в основном открывающуюся перспективу успеха в решении ряда проблем особого рода. Заранее неизвестно исчерпывающе, каковы будут эти проблемы. Нормальная наука состоит в реализации этой перспективы по мере расширения частично намеченного в рамках парадигмы знания о фактах. Реализация указанной перспективы достигается также благодаря все более широкому сопоставлению этих фактов с предсказаниями на основе парадигмы и благодаря дальнейшей разработке самой парадигмы.

Немногие из тех, кто фактически не принадлежит к числу исследователей в русле зрелой науки, осознают, как много будничной работы такого рода осуществляется в рамках парадигмы или какой привлекательной может оказаться такая работа. А это следовало бы понимать. Именно наведением порядка занято большинство ученых в ходе их научной деятельности. Вот это и составляет то, что я называю здесь нормальной наукой. При ближайшем рассмотрении этой деятельности (в историческом контексте или в современной лаборатории) создается впечатление, будто бы природу пытаются «втиснуть» в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку, часто, в сущности, вообще упускаются из виду. Ученые в русле нормальной науки не ставят себе цели создания новых теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими. Напротив, исследование в нормальной науке направлено на разработку тех явлений и теорий, существование которых парадигма заведомо предполагает. (С. 49-51)

Нормальная наука как решение головоломок

Термины «задача-головоломка» и «специалист по решению задач-головоломок» имеют первостепенное значение для многих вопросов, которые будут в центре нашего внимания на следующих страницах. Задачи-головоломки — в самом обычном смысле, подразумеваемом в данном случае, — представляют собой особую категорию проблем, решение которых может служить пробным камнем для проверки таланта и мастерства исследователя. Словарными иллюстрациями к слову могут служить «составная фигура-головоломка» и «головоломка-кроссворд». У этих головоломок есть характерные черты, общие с нормальной наукой, черты, которые мы должны теперь выделить. Одна из них только что упоминалась. Но она не является критерием доброкачественной головоломки, показателем того, что ее решение может быть само по себе интересным или важным. Напротив, действительно неотложные проблемы, например поиски средства против рака или создание прочного мира на земле, часто вообще не являются головоломками главным образом потому, что их решение может полностью отсутствовать. Рассмотрим «составную фигуру-головоломку», элементы которой взяты наугад из двух разных коробок с головоломками. Поскольку эта проблема, вероятно, должна таить в себе непреодолимые трудности (хотя их может и не быть) даже для самых изобретательных людей, она не может служить проверкой мастерства в решении головоломок. В любом обычном смысле ее вообще нельзя назвать головоломкой. Хотя собственная ценность не является критерием головоломки, существование решения является таким критерием. (С. 65)

Приоритет парадигм

До сих пор эта точка зрения излагалась чисто теоретически: парадигмы могут определять характер нормальной науки без вмешательства открываемых правил. Позвольте мне теперь попытаться лучше разъяснить эту позицию и подчеркнуть ее актуальность путем указания на некоторые причины, позволяющие думать, что парадигма действительно функционирует подобным образом. Первая причина, которая уже обсуждалась достаточно подробно, состоит в чрезвычайной трудности обнаружения правил, которыми руководствуются ученые в рамках отдельных традиций нормального исследования. Эти трудности напоминают сложную ситуацию, с которой сталкивается философ, пытаясь выяснить, что общего имеют между собой все игры. Вторая причина, в отношении которой первая в действительности является следствием, коренится в природе научного образования. Ученые (это должно быть уже ясно) никогда не заучивают понятия, законы и теории абстрактно и не считают это самоцелью. Вместо этого все эти интеллектуальные средства познания с самого начала сливаются в некотором ранее сложившемся исторически и в процессе обучения единстве, которое позволяет обнаружить их в процессе их применения. Новую теорию всегда объявляют вместе с ее применениями к некоторому конкретному разряду природных явлений. В противном случае она не могла бы даже претендовать на признание. После того как это признание завоевано, данные или другие приложения теории сопровождают ее в учебниках, по которым новое поколение исследователей будет осваивать свою профессию. Приложения не являются просто украшением теории и не выполняют только документальную роль. Напротив, процесс ознакомления с теорией зависит от изучения приложений, включая практику решения проблем как с карандашом и бумагой, так и с приборами в лаборатории. Например, если студент, изучающий динамику Ньютона, когда-либо откроет для себя значение терминов «сила», «масса», «пространство» и «время», то ему помогут в этом не столько неполные, хотя в общем-то полезные, определения в учебниках, сколько наблюдение и применение этих понятий при решении проблем.

Данный процесс обучения путем теоретических или практических работ сопровождает весь ход приобщения к профессии ученого. По мере того как студент проходит путь от первого курса до докторской диссертации и дальше, проблемы, предлагаемые ему, становятся все более сложными и неповторимыми. Но они по-прежнему в значительной степени моделируются предыдущими достижениями, так же как и проблемы, обычно занимающие его в течение последующей самостоятельной научной деятельности. Никому не возбраняется думать, что на этом пути ученый иногда пользуется интуитивно выработанными им самим правилами игры, но оснований для того, чтобы верить в это, слишком мало. Хотя многие ученые говорят уверенно и легко о собственных индивидуальных гипотезах, которые лежат в основе того или иного конкретного участка научного исследования, они характеризуют утвердившийся базис их области исследования, ее правомерные проблемы и методы лишь немногим лучше любого дилетанта. О том, что они вообще усвоили этот базис, свидетельствует главным образом их умение добиваться успеха в исследовании. Однако эту способность можно понять и не обращаясь к предполагаемым правилам игры. (С. 77-78)

Природа и необходимость научных революций

Эти замечания позволяют нам наконец рассмотреть проблемы, к которым нас обязывает само название этого очерка. Что такое научные революции и какова их функция в развитии науки? Большая часть ответов на эти вопросы была предвосхищена в предыдущих разделах. В частности, предшествующее обсуждение показало, что научные революции рассматриваются здесь как такие некумулятивные эпизоды развития науки, во время которых старая парадигма замещается целиком или частично новой парадигмой, несовместимой со старой. Однако этим сказано не все, и существенный момент того, что еще следует сказать, содержится в следующем вопросе. Почему изменение парадигмы должно быть названо революцией? Если учитывать широкое, существенное различие между политическим и научным развитием, какой параллелизм может оправдать метафору, которая находит революцию и в том и в другом?

Один аспект аналогии должен быть уже очевиден. Политические революции начинаются с роста сознания (часто ограничиваемого некоторой частью политического сообщества), что существующие институты перестали адекватно реагировать на проблемы, поставленные средой, которую они же отчасти создали. Научные революции во многом точно так же начинаются с возрастания сознания, опять-таки часто ограниченного узким подразделением научного сообщества, что существующая парадигма перестала адекватно функционировать при исследовании того аспекта природы, к которому сама эта парадигма раньше проложила путь. И в политическом и в научном развитии осознание нарушения функции, которое может привести к кризису, составляет предпосылку революции. Кроме того, хотя это, видимо, уже будет злоупотреблением метафорой, аналогия существует не только для крупных изменений парадигмы, подобных изменениям, осуществленным Лавуазье и Коперником, но также для намного менее значительных изменений, связанных с усвоением нового вида явления, будь то кислород или рентгеновские лучи. Научные революции, как мы отмечали в конце V раздела, должны рассматриваться как действительно революционные преобразования только по отношению к той отрасли, чью парадигму они затрагивают. Для людей непосвященных они могут, подобно революциям на Балканах в начале XX века, казаться обычными атрибутами процесса развития. Например, астрономы могли принять открытие рентгеновских лучей как простое приращение знаний, поскольку их парадигмы не затрагивались существованием нового излучения. Но для ученых типа Кельвина, Крукса и Рентгена, чьи исследования имели дело с теорией излучения или с катодными трубками, открытие рентгеновских лучей неизбежно нарушало одну парадигму и порождало другую. Вот почему эти лучи могли быть открыты впервые только благодаря тому, что нормальное исследование каким-то образом зашло в тупик. (С. 129-130)

<...> Нормальное исследование, являющееся кумулятивным, обязано своим успехом умению ученых постоянно отбирать проблемы, которые могут быть разрешены благодаря концептуальной и технической связи с уже существующими проблемами. (Вот почему чрезмерная заинтересованность в прикладных проблемах безотносительно к их связи с существующим знанием и техникой может так легко задержать научное развитие.) Если человек стремится решать проблемы, поставленные существующим уровнем развития науки и техники, то это значит, что он не просто озирается по сторонам. Он знает, чего хочет достичь, соответственно этому он создает инструменты и направляет свое мышление. Непредсказуемые новшества, новые открытия могут возникать только в той мере, в какой его предсказания, касающиеся как возможностей его инструментов, так и природы, оказываются ошибочными. Часто важность сделанного открытия будет пропорциональна степени и силе аномалии, которая предвещала открытие. Таким образом, должен, очевидно, возникнуть конфликт между парадигмой, которая обнаруживает аномалию, и парадигмой, которая позднее делает аномалию закономерностью. Примеры открытий, связанные с разрушением парадигмы и рассмотренные в IV разделе, не представляют собой простых исторических случайностей. Наоборот, никакого другого эффективного пути к научному открытию нет.

Та же самая аргументация используется даже более очевидно в вопросе создания новых теорий. В принципе есть только три типа явлений, которые может охватывать вновь созданная теория. Первый состоит из явлений, хорошо объяснимых уже с точки зрения существующих парадигм; эти явления редко представляют собой причину или отправную точку для создания теории. Когда они все же порождают теорию — как было с тремя известными предвидениями, рассмотренными в конце VII раздела, — то результат редко оказывается приемлемым, потому что природа не дает никакого основания для того, чтобы предпочитать новую теорию старой. Второй вид явлений представлен теми, природа которых указана существующими парадигмами, но их детали могут быть поняты только при дальнейшей разработке теории. Эго явления, исследованию которых ученый отдает много времени, но его исследования в этом случае нацелены на разработку существующей парадигмы, а не на создание новой. Только когда эти попытки в разработке парадигмы потерпят неудачу, ученые переходят к изучению третьего типа явлений, к осознанным аномалиям, характерной чертой которых является упорное сопротивление объяснению их существующими парадигмами. Только этот тип явлений и дает основание для возникновения новой теории. Парадигмы определяют для всех явлений, исключая аномалии, соответствующее место в теоретических построениях исследовательской области ученого. (С. 134-135)

Разрешение революций

Дальше возникает вопрос, как ученые убеждаются в необходимости осуществить такую переориентацию. Частично ответ состоит в том, что очень часто они вовсе не убеждаются в этом. Коперниканское учение приобрело лишь немногих сторонников в течение почти целого столетия после смерти Коперника. Работа Ньютона не получила всеобщего признания, в особенности в странах континентальной Европы, в продолжение более чем 50 лет после появления «Начал». Пристли никогда не принимал кислородной теории горения, так же как лорд Кельвин не принял электромагнитной теории и т.д. Трудности новообращенна часто отмечались самими учеными. Дарвин особенно прочувствованно писал в конце книги «Происхождение видов»: «Хотя я вполне убежден в истине тех воззрений, которые изложены в этой книге в форме краткого обзора, я никоим образом не надеюсь убедить опытных натуралистов, умы которых переполнены массой фактов, рассматриваемых ими в течение долгих лет с точки зрения, прямо противоположной моей... Но я смотрю с доверием на будущее, на молодое возникающее поколение натуралистов, которое будет в состоянии беспристрастно взвесить обе стороны вопроса». А Макс Планк, описывая свою собственную карьеру в «Научной автобиографии», с грустью замечал, что «новая научная истина прокладывает дорогу к триумфу не посредством убеждения оппонентов и принуждения их видеть мир в новом свете, но скорее потому, что ее оппоненты рано или поздно умирают и вырастает новое поколение, которое привыкло к ней». (С. 196-197)

Парадигмы как общепризнанные образцы

Парадигма как общепризнанный образец составляет центральный элемент того, что я теперь считаю самым новым и в наименьшей степени понятым аспектом данной книги. Поэтому именно образцы требуют здесь большего внимания, чем другие компоненты дисциплинарной матрицы. Философы науки обычно не обсуждали проблемы, с которыми сталкивается студент в лабораториях или при усвоении учебного материала, все это считалось лишь практической работой в процессе применения того, что студент уже знает. Он не может, говорили философы науки, решить никакой проблемы вообще, не изучив перед этим теорию и некоторые правила ее приложения. Научное знание воплощается в теории и правилах; проблемы ставятся таким образом, чтобы обеспечить легкость в применении этих правил. Я попытался доказать тем не менее, что такое ограничение познавательного содержания науки ошибочно. После того как студент уже решил множество задач, в дальнейшем он может лишь усовершенствоваться в своем навыке. Но с самого начала и еще некоторое время спустя решение задач представляет собой способ изучения закономерности явлений природы. В отсутствие таких образцов законы и теории, которые он предварительно выучил, имели бы бедное эмпирическое содержание.

Чтобы показать, что я имею в виду, я позволю себе кратко вернуться к символическим обобщениям. Одним из широкопризнанных примеров является второй закон Ньютона, обычно выражаемый формулой F=та. Социолог или, скажем, лингвист, которые обнаружат, что соответствующее выражение сформулировано в аподиктической форме и принято всеми членами данного научного сообщества, не поймут без многих дополнительных исследований большую часть того, что означают выражения или термины в этой формуле, и то, как ученые сообщества соотносят это выражение с природой. В самом деле, тот факт, что они принимают его без возражений и используют его как средство, посредством которого вводятся логические и математические операции, еще отнюдь не означает сам по себе, что они соглашаются по таким вопросам, как значение и применение этих понятий. Конечно, они согласны по большей части этих вопросов; если бы это было не так, это сразу бы сказалось на процессе научного общения. <...> (С. 241-242)

Данный текст является ознакомительным фрагментом.