ВЛАДИМИР АЛЕКСАНДРОВИЧ СМИРНОВ. (1931 - 1996)

We use cookies. Read the Privacy and Cookie Policy

ВЛАДИМИР АЛЕКСАНДРОВИЧ СМИРНОВ. (1931 - 1996)

В.А. Смирнов — доктор философских наук, профессор, выдающийся российский логик и методолог науки.

С 1961 года до конца жизни работал в Институте философии РАН, с 1988 года — зав. сектором логики, с 1992 года — зав. отделом эпистемологии, логики и философии науки и техники, более двадцати пяти лет был профессором кафедры логики философского факультета МГУ им. М.В. Ломоносова. В 1991 году становится директором им же организованного Общественного института логики, когнитологии и развития личности, руководителем Центра логических исследований в ИФ РАН.

Основные результаты Смирнова в области методологии и философии науки определяются применением к ее проблематике логических методов анализа, нередко им же самим разработанных. Особое внимание Смирнов уделял анализу научных теорий: способам их построения, введения новых терминов, логической структуре и сравнению теорий между собой. Им разработан понятийный аппарат, позволяющий осуществлять строго научный анализ соизмеримости различных теорий. Ряд работ посвящен проблемам философии математики, в последние годы жизни Смирнов активно интересовался проблемами логики и методологии диагностики в медицине, в результате появилась коллективная монография «Логика и клиническая диагностика. Теоретические основы». Обширная научно-педагогическая деятельность Смирнова привела к появлению Научной школы логики В.А. Смирнова.

В. А. Смирнов был блестящим организатором, с его именем во многом связаны успешное участие делегаций советских, а затем российских философов в работе Международных конгрессов по логике, методологии и философии науки; реализация идеи Объединенных международных конференций по истории и философии науки; организация Всесоюзных, а затем Всероссийских конференций по логике, методологии и философии науки.

Основные труды Смирнова по методологии и философии науки: «Генетический метод построения научных теорий» // Философские проблемы современной формальной логики. М., 1962; «Проблемы логики и философии математики» // Вопросы философии. 1980, № 8; «О логических отношениях между теориями» // Идеалы и нормы научного исследования. Минск, 1981; «Логические методы сравнения научных теорий» // Вопросы философии. 1983, № 6; «Творчество, открытие и логические методы поиска доказательств» // Природа научного открытия. М., 1986; «Логические методы анализа научного знания». М., 1987 (монография); «Логический анализ научных теорий и отношений между ними» //Логика научного познания: актуальные проблемы. М., 1987; «Логикометодологическая модель диагноза» //Логика и клиническая диагностика. Теоретические основы. М., 1994.

П.Н. Грифцова

Тексты даны по изданию:

Логико-философские труды В.А. Смирнова / Под ред. В.И. Шалака. М, 2001.

Генетический метод построения научной теории

I

Важнейшей частью метаматематики является раздел, изучающий научные теории. Эту дисциплину вполне естественно назвать метатеорией. Ясно, что она не тождественна метанауке (иногда такое отождествление проводится), так же как наука не тождественна научной теории.

Как правило, метатеория строится не для одной содержательной теории — хотя возможна такая метатеория, - а охватывает определенный класс теорий. Создать единую метатеорию, рассматривающую все возможные типы теорий - оставляя вопрос о принципиальной возможности открытым, — на данном этапе нельзя. Выход один - разбить известные теории на ряд классов и дать метатеорию для каждого класса. Очевидно, что при отсутствии единой метатеории разбиение будет содержательным и не будет претендовать на полноту. Каковы же мыслимые основания для подобного разбиения?

Первое, что можно предложить, это классификация по научным дисциплинам. Мы можем разделить теории на математические, физические, химические, лингвистические и т.д. и соответственно строить теорию математических теорий, теорию физических теорий и т. и. Такое разделение общепризнанно и имеет определенный практический смысл, так как позволяет особенно четко согласовать задачи метатеоретика с задачами теоретика данной области. Но в теоретическом плане подобная классификация не выдерживает критики, так как она основана не на различии между теориями, а на различии предметных областей теорий. Подобная классификация была бы оправданной, если бы специфическому предмету теории соответствовал особый тип теории. Из общих соображений скорее напрашивается иной вывод, а именно - структура теорий разных областей может оказаться одной и той же. Но, повторяем, подобная классификация все же имеет практическое значение, так как каждую область знания интересует прежде всего теория знания данной области.

Второй принцип разбиения, который необходимо иметь в виду, - это Уровень строгости теории. Теория в своем становлении проходит ряд этапов, начиная с комплекса общих схематических идей и предпосылок и кончая логически безупречным построением, элиминирующим все интуитивное. При всей важности такого подхода здесь царит полная неопределенность. На практике ученый не доводит свою теорию до идеала логики. При знании средств и путей перехода от «нестрогой» к «строгой» теории эта незавершенность найдет свое оправдание.

Реальный путь познания - движение от нестрогой к строгой теории, путь же изучения метатеоретика обратный - от строгой к нестрогой теории.

Наконец, мы должны обратить внимание и на такое основание, как логический тип теории, т.е. на принципы построения и логические средства научных теорий. Иногда отождествляют всякую строго построенную научную теорию с аксиоматической системой. На наш взгляд, такое отождествление неправомерно, так как исторически известны иные - не менее строгие - способы построения научных теорий. Так, ряд крупных логиков и математиков различают два метода построения математических теорий: аксиоматический и генетический. <...> С. 417-418.

II

Под аксиоматической теорией понимают научную систему, все положения которой выводятся чисто логически из некоторого множества положений, принимаемых в данной системе без доказательства и называемых аксиомами, и все понятия сводятся к некоторому фиксированному классу понятий, называемых неопределяемыми.

Теория будет определена, если указана система аксиом и совокупность логических средств, применяемых в данной теории. Для аксиоматической теории такими логическими средствами будут правила вывода. Производные понятия в аксиоматической теории суть лишь сокращения для комбинации основных. Допустимость самих комбинаций определяется аксиомами и правилами вывода. Другими словами, определения в аксиоматических теориях носят номинальный характер. (Вариант, когда аксиоматическая система строится на основе так называемых реальных определений, сводится к аксиоматической системе с номинальными определениями и соответствующими аксиомами существования.)

Аксиоматический метод прошел длительную эволюцию. В ряде случаев этапы, им пройденные, не являются лишь историческими ступенями, а соответствующим образом уточненные представляют различные виды или уровни аксиоматического метода. Можно вычленить три таких этапа: содержательной, формальной и формализованной аксиоматик.

Под содержательной аксиоматической теорией понимают теорию относительно некоторой системы объектов, известной до формулировки теории; аксиомы и выводимые из них теоремы говорят нечто об объектах изучаемой системы и могут расцениваться как истинные или ложные. Задача аксиоматической теории состоит в том, чтобы найти такую систему аксиом, чтобы все значимые относительно этой системы объектов общие положения выводились чисто логически из принятой системы аксиом. В качестве примера содержательной аксиоматической системы можно привести термодинамику. Метод содержательной аксиоматики был единственной формой аксиоматического метода до последней четверти прошлого столетия.

Новым этапом и соответственно новым уровнем является формальная аксиоматика, систематически проведенная в «Основаниях геометрии» Д. Гильбертом. При формальной аксиоматике абстрагируются от конкретного содержания понятий, входящих в систему аксиом, и от природы предметной области. В основу формальной аксиоматики кладется система аксиом, затем из этих аксиом получают следствия, которые образуют теорию относительно любой системы объектов, удовлетворяющей положенным в основу аксиомам. В формальной аксиоматике явно выступает ее экзистенциальный характер, так как в ней «имеют дело с постоянной системой вещей, разграниченная прямо область субъектов которой образована для всех предикатов, из которых составляются высказывания теории». Другими словами, аксиоматически-экзистенциальный подход основывается на такой сильной идеализации, как идеализация актуальной бесконечности. Переход к формальной аксиоматике делает необходимым доказательство ее непротиворечивости. Если бы теория была противоречивой, то в ней можно было бы доказать любое положение и она потеряла бы всякую значимость как средство отображения действительности. Каким же образом можно доказать непротиворечивость формальной системы?

Ссылка на соответствующую формальной системе содержательную аксиоматику, т.е. ссылка на определенный фрагмент действительности, ничего не даст. Дело в том, что всякая аксиоматическая система (в том числе и содержательная) есть некоторая упрощенная идеализация, лишь приблизительно соответствующая действительности. Переходя от содержательной аксиоматики к формальной и доказывая непротиворечивость последней, имеют цель доказать внутреннюю пригодность этой идеализации. Ссылка же для доказательства пригодности какой-либо идеализации на саму эту идеализацию явно представляет круг. Сказанное не означает, что непротиворечивость нельзя доказать методом моделей. Как раз, напротив, показав, что данная система аксиом выполнима, т.е. имеется система объектов, удовлетворяющая ей, тем самым доказывают се непротиворечивость. Но все дело в том, что модель должна быть абстрактной (т.е. взята с точностью до изоморфизма) и каким-то образом точно определена. С. 419-420. Чтобы оправдать такого рода систему аксиом, необходимо указать бесконечную область, для которой она выполняется, но убедиться в существовании бесконечной области можно только через значимость системы аксиом, характеризующих ее. Получается круг. Этот круг можно раздвинуть, т. е. указать модель для данной системы аксиом, определив эту модель через выполнимость некоторой другой системы аксиом. Таким образом удается свести непротиворечивость одной теории к непротиворечивости другой. Так, если система объектов определена через выполнимость системы аксиом ,41 и таким образом определенная система S удовлетворяет системе аксиом ,42, то ,42 будет непротиворечивой, если непротиворечива ,41.

Непротиворечивость одной теории сводится к непротиворечивости другой - круг Раздвигается, по не разрывается.

Чтобы выйти из этого круга, Д. Гильберт предложил доказывать непротиворечивость в отрицательном смысле, т.е. аксиоматическая система непротиворечива, если в этой системе не может быть выведено предложение А и его отрицание.

Для достижения этой цели, согласно программе Гильберта, надо представить аксиоматическую систему в исчислении, трансформировав правила логики в правила оперирования символами, в правила исчисления. После этого вопрос о непротиворечивости аксиоматической системы сводится к доказательству невозможности получения в исчислении формулы определенного вида. Само исчисление, которое является формализацией аксиоматической теории, рассматривают как аксиоматическую систему 3-го уровня. Иногда под аксиоматической системой в строгом смысле слова имеют в виду только исчисление, только формализм. Мы будем называть аксиоматическую систему на этом уровне формализованной теорией, аксиоматическим исчислением. С.420-421.

Генетический метод является методом, в рамках которого изучается формализм. Д. Гильберт считает, что в рамках генетического метода вполне возможно решить вопрос о непротиворечивости исчислений, но он недостаточен для прямого обоснования математики.

Задача обоснования теоретико-множественной системы мышления (на которой основывается аксиоматический метод второго уровня) решается Гильбертом путем формализма (аксиоматической системы третьего уровня) в рамках генетической (рекурсивной) системы мышления. Для Гильберта и формалистов последняя система мышления является слишком слабой, чтобы доставлять интерпретации даже для простых аксиоматических исчислений. Для них генетический метод является лишь средством обоснования аксиоматического метода. С. 422.

III

В чем же характерные особенности генетического метода, безотносительно к частным ограничениям? В чем его отличие от аксиоматического метода? Эго отличие мы видим, во-первых, в способе введения объектов теории и, во-вторых, в логической технике этих теорий.

При аксиоматическом методе область предметов, относительно которой строится теория, не берется за нечто исходное; за исходное берут некоторую систему высказываний, описывающих некоторую область объектов, и систему логических действий над высказываниями теории.

При генетическом подходе отправляются как от исходного от некоторых налично данных объектов и некоторой системы допустимых действий над объектами. В генетической теории процесс рассуждения представлен в «форме мысленного эксперимента о предметах, которые взяты как конкретно наличные». С. 422-423.

Элементарные действия над объектами теории считаются также данными и всегда осуществимыми. Мы абстрагируемся от реальных возможностей осуществления операций. Поэтому в генетической теории рассуждают не только о тех объектах, которые действительно построены, точнее, представители которых построены, но и о тех, которые могут быть построены из уже построенных посредством допустимых действий. Если даны исходные объекты и метод построения какого-то объекта, то о последнем рассуждают как о чем-то уже данном. Объекты теории задаются через указание исходных объектов и процедур получения из данных объектов новых. С. 423.

К. Поппер прав: диалектическая логика невозможна

К. Поппер дает очень аргументированную критику гегелевских идей диалектической логики. Одним из принципов диалектики, понимаемой как логика, является отказ от закона непротиворечия. Согласно этому подходу могут быть истинными противоречивые утверждения типа А и не-А. К. Поппер показывает, что при очень простых предпосылках - принятии, что из «p» следует «p или q» и из «р или q» и «не-p» следует «q», -мы из противоречия можем вывести произвольное утверждение. Таким образом, в обычной логике принятие противоречивого утверждения разрушает всю систему.

К. Поппер пишет, что в принципе возможна логическая система, в которой из противоречия не следовало бы все что угодно. К. Поппер пишет: «Я специально занимался этим вопросом и пришел к выводу, что такая система возможна». К. Поппер построил систему, дуальную интуиционистской (см. статью К. Поппера «О теории дедукции», опубликованную в 1948 г. в трудах голландской академии наук). К. Поппер отмечает, что эта система очень слабая, в ней не имеет места даже обычный modus ponens. К. Поппер приходит к следующему выводу: «По моему мнению, подобная система совершенно непригодна для вывода заключений, хотя и представляет, возможно, некоторый интерес для тех, кто специализируется на построении формальных систем».

Однако развитие логики показало важность подобного рода систем. Более того, как мы покажем ниже, системы, дуальные интуиционистской, реализуют центральную идею попперовской философии науки -идею фальсификационизма. С. 291.

<...> Классическая логика опирается на аристотелевское понятие истинности утверждения как его соответствия действительности. При этом абстрагируются от того, что истина есть результат познавательного процесса. Интуиционистская логика исходит из более тонкого понимания истинности. Знание релятивизировано относительно времени. В каждый момент времени в поле нашего внимания может оказаться только конечное множество объектов и может быть принято только конечное число атомарных предложений об этих объектах. Принимаются очень сильные идеализации: объекты, оказавшиеся в поле внимания, не исчезают со временем, предметная область может только расширяться, но не сужаться; уже полученное знание не исчезает, не забывается; то, что признано истинным сегодня, будет признано и завтра. Смысл логических связок, введенных на основе этих Допущений, будет отличным от смысла классических связок. <...> Меняется и смысл кванторов.

Утверждение будет логически истинным, если оно истинно в любой момент времени при любом ходе познавательной деятельности.

Это очень прозрачная с точки зрения классической логики и математики семантика. Легко видеть, что при таком подходе не будет логически истинным закон исключенного третьего «A или не-A», закон двойного отрицания «если не-не-A, то A». Логику, дуальную интуиционистской, построить нетрудно. Со времен Г. Генцена известна секвенциальная логистическая формулировка классической логики. В ней оперируют с записями о выводимостях. А1,..., А > B1,..., B означает, что если истинна каждая из формул, стоящих слева от стрелки, то истинна, по крайней мере, одна из формул справа от стрелки. Правила логики есть правила введения сложных формул слева и справа от стрелки. Интуиционистская логика отличается от классической только тем, что справа от стрелки не может быть более одной формулы. Если мы примем ограничение, что слева от стрелки не может стоять более одной формулы, то получим логику, двойственную интуиционистской. Эго система, о которой говорит К. Поппер в своей статье. Но каков содержательный смысл этой системы?

Я полагаю, что логика, дуальная интуиционистской, имеет естественную семантику. И эта семантика основана на идее фальсификационизма. Я не знаю, связывал ли сам К. Поппер с идеей фальсификации эту логику. Если ограничиться логикой высказываний, то мы должны допустить, что со временем признание ложности чего-то сохраняется. Если утверждение «A» ложно сегодня, то оно будет ложно и завтра и во все последующие времена. «A и B» ложно в момент t, если во все последующие времена (включая t) будет ложно «A» или ложно «B»; не-A ложно в момент t, если «A» не ложно в t и последующие времена. «A» есть закон логики, если «A» не ложно в любой момент времени при любом ходе исследований.

Формула называется опровержимой, если она ложна при любых оценках атомарных формул. В классической логике класс общезначимых формул совпадает с классом неопровержимых. Это не так для интуиционистской логики и логики, ей дуальной. Класс опровержимых формул интуиционистской логики совпадает с классом формул, опровержимых классически. Для логики, дуальной интуиционистской, класс ее общезначимых формул совпадает с классом общезначимых формул классической логики, но не всякая формула, опровержимая классически, будет опровержима в логике, двойственной интуиционистской. Так, формула «A и не-A» опровержима классически, но не опровержима в логике, двойственной интуиционистской. Естественно, понятия логического следования будут различны в классической, интуиционистской и двойственной интуиционистской логиках. С. 292-293.

Имеются и другие направления в построении неаристотелевых логик: логики с не всюду определенным понятием истинности, логики с пресыщенными оценками и т.д.

Однако все эти исследования находятся в рамках основного развития логической мысли. И К. Поппер прав, отрицая возможность диалектики как логики, хотя и видит возможность построения логик, в которых из противоречия не следует все что угодно.

Данный текст является ознакомительным фрагментом.