ГЕРМАН ХАКЕН. (Род. 1927)
ГЕРМАН ХАКЕН. (Род. 1927)
Г. Хакен (Haken) — известный немецкий ученый, один из основателей синергетики. Термин «синергетика» был им введен в 1969 году для обозначения научного подхода, исследующего процессы самоорганизации в физических, химических и биологических системах. Ныне под синергетикой понимают мощное направление междисциплинарных научных исследований, в рамках которого изучаются процессы перехода от хаоса к порядку в открытых нелинейных системах. Начав свою научную деятельность как физик-лазерщик, Хакен принципиально расширил круг своих исследований природы самоорганизации (как последовательности фазовых переходов при соответствующем действии управляющих параметров) от физики лазеров до нейросинергетики и социосинергетики. В целом синергетика, по Хакену, исследует процессы эволюции сложных систем как их самоорганизацию. В кратком виде ее часто называют концепцией (теорией) самоорганизации, а более широко — теорией нелинейных процессов. Подобный подход настолько адекватно характеризует главные особенности современной науки, называемой постнекласссической, что многие актуальные проблемы науки раскрываются сквозь призму синергетической парадигмы. Взгляды Хакена представлены ниже на основе одной из последних опубликованных им книг, которая служит прекрасным примером реализации синергетического подхода к изучению естественно-научных и философских проблем общества и человека на основе таких сложных процессов, как функционирование головного мозга, поведения и реализации познавательных возможностей человека.
На русском языке опубликованы следующие работы Хакена: Синергетика. М., 1980; Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М., 1985; Информация и самоорганизация. М., 1991; Принципы работы головного мозга. М, 2001.
В.Н. Князев
Приведенные фрагменты текста взяты из книги:
Хакен Г. Принципы работы головного мозга. М., 2001.
Нашу книгу можно рассматривать как попытку построить последовательную теорию активности мозга на макроскопическом уровне. Мы рассматриваем мозг как гигантскую сложную систему, которая подчиняется законам синергетики, т.е. функционирует вблизи точек потери устойчивости, где макроскопические паттерны определяются параметрами порядка.
Принцип подчинения наводит мост между макроскопическим и микроскопическим уровнями. В прошлом из-за сложности функционирования мозга в области теории мозга доминировали его словесные описания. В настоящее время ситуация быстро изменяется из-за двух основных направлений исследований. Одно из них, которое можно было бы назвать коннекционизмом, восходит корнями к модели Мак-Каллоха-Питтса, о которой мы кратко упоминали в гл.18. Другим направлением можно считать последовательную реализацию математического моделирования головного мозга на основе идей синергетики. Эта программа в общих чертах изложена в нашей книге. Сказанное отнюдь не означает, будто не существует других подходов, но, насколько можно судить, другие подходы уступают по широте синергетическому. Очень часто словесные описания кажутся более гибкими из-за неоднозначности, присущей самой природе языка. В отличие от вербальных математические подходы операциональны, т.е. допускают строгую проверку сделанных утверждений. По-видимому, наиболее адекватный подход должен был бы лежать где-то посредине, т.е. не должен был бы быть столь жестким, как существующие ныне математические подходы, и должен был бы носить более количественный характер, чем обычные словесные описания. (С. 307)
Дух и материя — вечный вопрос
Изложенные нами подходы наглядно демонстрирует всю важность одной существенной идеи синергетики, а именно идеи самоорганизации системы, косвенно управляемой приданием подходящих значений управляющим параметрам. Придание управляющим параметрам определенных значений — задача отнюдь не тривиальная. Всякий раз, когда возникает необходимость в фиксации управляющих параметров в уравнениях модели, будь то уравнения, описывающие постукивание пальцами, или анализа МЭГ, решения чувствительно зависят от значений параметров. В этой связи возникает очень глубокая проблема, а именно вопрос: кто придает соответствующие значения управляющим параметрам в мозгу? Верна ли идея Экклса, согласно которой мозг представляет собой вычислительную машину, или компьютер, а его программа, или — в терминах самоорганизации — значения его управляющих параметров, определяются разумом? Я глубоко убежден, что управляющие параметры задаются мозгом через другие процессы самоорганизации на ином уровне, нежели уровень уравнений, определяющих, например, те или иные движения. Имеется ряд указаний относительно того, каким образом может быть достигнуто придание параметрам подходящих значений: один из возможных путей — обучение, т.е. изменение синаптических сил. Косвенным указанием на придание соответствующих значений управляющим параметрам служат так называемые Bereiftschatspotentiale (потенциалы готовности), открытые Корнхубером и Дикке (1965). В соответствующих экспериментах испытуемого просят, например, поднять указательный палец всякий раз, когда ему того захочется.
В какой-то момент времени палец поднимается. Но (в этом и состоит решающее открытие), как показывает ЭЭГ, примерно за 60 миллисекунд в мозгу возникают специфические электрические потенциалы. Мозг как бы заранее готовится к предстоящему действию. По моему мнению, возникновение Bereiftschatspotentiale является еще одним актом самоорганизации, предшествующим другим актам самоорганизации, который приводит к установлению соответствующих значений управляющих параметров. Возникает очевидная трудность: что «запускает» самоорганизацию Bereiftschaftspotentiale? Я полагаю, что происходит трансформация микроскопических явлений в макроскопические проявления в форме электрических потенциалов. По моему убеждению, все действия мозга, которые ныне считаются нематериальными, в действительности связаны с материальными процессами. Например, команда (передаваемая по материальным путям) материально хранится в нейронах (или синапсах и т.п.), а затем (может быть, спонтанно) активируется (возможно, флуктуацией). Экспериментальное доказательство моей гипотезы затруднительно, по крайней мере в настоящее время, поскольку о материальной основе памяти известно слишком мало.
Я отнюдь не утверждаю, что все свойства разума являются всего лишь результатом материальной активности мозга. Моя точка зрения основывается на концепции параметров порядка и принципа подчинения, включая принцип круговой причинности. Иначе говоря, моя интерпретация состоит в том, что абстрактные процессы управляются параметрами порядка (и их изменениями) и что материальные процессы, описываемые отдельными переменными системы, обуславливают друг друга. Возможно, не так уже плохо, что эти утверждения непроверяемы или носят «философский» характер. Причина заключается в том, что мозг необычайно сложен и возникновение новых качеств может происходить на множестве различных уровней от микроскопического до макроскопического, и поэтому установить все корреляции, необходимые для доказательства того, что новое качество действительно возникло, может быть очень трудно.
В нашей книге мы не раз по различным поводам отмечали, что наличие параметров порядка и действие принципа подчинения влекут за собой колоссальное сжатие информации. Характерные сложные микроскопические конфигурации управляются одним или несколькими параметрами порядка. Ярким примером того, как действует сжатие информации, служит сам язык. Какое-нибудь простое слово, например, «собака», включает в себя неисчерпаемое разнообразие пород, окраса, форм, осанок и т.п. Коммуникация стала возможной лишь благодаря сжатию информации в указанном выше и других смыслах. Вместе с тем сжатие информации порождает неоднозначности, и эффективность языка заключается в балансе между однозначностью и неоднозначностью.
Интересно отметить, что сжатие информации можно обнаружить и в управлении двигательной активностью. Как было показано нами в эксперименте с педало, это движение в конечном счете после обучения управляется одним комплексным параметром порядка, удовлетворяющим весьма универсальному уравнению для параметра порядка, а именно осцилляторному уравнению Ван дер Поля. С другой стороны, отдельные параметры порядка необходимо сделать эффективными путем трансляции на многие степени свободы, например, на мышечные клетки. Этот процесс можно рассматривать как инфляцию информации. Таким образом, принцип подчинения имеет в определенном смысле два аспекта: с одной стороны, принцип подчинения служит сжатию информации, с другой — порождает инфляцию информации.
Еще один аспект заслуживает обсуждения: природа параметров порядка. За редким исключением параметры порядка нематериальны, например, параметром порядка может быть фазовый угол, как в примере с движением пальца. Это немедленно приводит нас к проблеме «дух-материя» или «разум-тело»: как такая нематериальная величина, как параметр порядка, может управлять поведением материальной системы, например, мышц? С чисто математической точки зрения никакая проблема, разумеется, не существует: фазовый угол и сокращение мышечных клеток могут быть описаны математическими переменными и их уравнениями движения. Как показано в синергетике, отдельные части системы с их переменными q приводят к возникновению параметров порядка ?, которые в свою очередь через принцип подчинения управляют поведением частей системы. Математически это выражается так:
т.е. q становится функцией параметров порядка ? .
Но в физике и еще в большей мере в философии мы хотим интерпретировать соотношения, или, иначе говоря, придать им смысл.
Например, закон Ньютона
ma=F (2)
т.е. произведение массы частицы на ее ускорение а равно действующей на частицу силе F, интерпретируют, утверждая: «сила F есть причта ускорения частицы». Что можно было бы считать интерпретацией соотношения (1)? Утверждение о том, что q представляет переменные материальных составляющих системы, например, мышечных клеток, тогда как параметр порядка ? представляет нематериальную величину (разум?). По аналогии между (1) и (2) можно было бы сказать: «Дух определяет поведение материи».
С другой стороны, как упоминалось выше, q порождает ?, или, если прибегнуть к интерпретации, «материя определяет дух». (Знаменитая книга Дельбрюка так и называется: «Дух из материи» ) Наконец, нельзя не упомянуть о круговой причинности: дух и материя взаимно обуславливают друг друга, или, иначе говоря, дух и материя - две стороны одной и той же медали. Такова моя точка зрения, но она не нова. Как я узнал от Атлана, этой точки зрения придерживался Спиноза. Боюсь, что по проблеме духа и материи могут быть высказаны и дискутироваться совершенно различные точки зрения. По моему мнению, в данном случае трудность начинается, когда мы переходим от математики к онтологии мозга и разума.
Каков бы ни был исход таких диспутов и обсуждений, я все же склоняюсь к понятию параметра порядка и принципу подчинения, по крайней мере как метафора проблемы разум-тело, а может быть и более широкой проблемы.
Некоторые открытые проблемы
В науке хорошо известно, что решение одной проблемы часто порождает дюжину новых вопросов. Разумеется, это применимо и к подходу, изложенному в нашей книге. Мозг — необычайно сложная система, и, как я упомянул в начале, эта система многогранна. Существуют многочисленные вопросы, которые не получили ответов в нашей книге или ответы на которые вообще не известны. Назову лишь некоторые из них. Один из таких вопросов: где локализована память? Локализована ли память в синапсах или, более конкретно, в рецепторах? Может быть, как подозревают некоторые ученые, например, Хамероф (1987). Проблема, которую я совсем не обсуждаю, — рост и развитие мозга. Эта проблема носит весьма фундаментальный характер, так как структура и функция взаимно обуславливают друг друга. Затронутая нами тема столь обширна, что заслуживает особой книги.
Еще одна проблема, которую я умышленно обошел молчанием, — сознание. Как заметил в своей последней книге Фриман (1995), эта проблема возникала снова и снова по крайней мере через каждые пятьдесят лет. По своему собственному опыту я знаю, что чем ближе область собственных исследований ученого к исследованию мозга, тем реже этот ученый говорит о проблеме сознания. Такою общее положение дел. Разумеется, не обходится и без исключений. Тем не менее создается впечатление, что все, кто так или иначе связан с исследованием активности мозга, весьма неохотно обсуждают проблему сознания. В качестве выдающихся контрпримеров можно назвать Крика и Коха (1990), а также Эдельмана (1992). Все они предложили различные научные подходы к проблеме сознания, но лично я предпочитаю оставить ее без обсуждения. То же относится и к таким свойствам, как восприятие цвета или ощущение боли. По моему мнению, эти свойства не поддаются (по крайней мере в настоящее время) математическому моделированию в указанных выше направлениях.
Какою же будущее изложенного мной подхода? Ясно, что мы можем предпринять попытки построить более сложные математические модели в рамках синергетики и подвергнуть анализу более сложные движения или типы поведения. Обширная область моделирования, которая еще только начинает развиваться, — это создание теории связанных нелинейных осцилляторов, которая позволила бы описать специфические эксперименты по зрительному восприятию, о чем говорилось в гл. 2 (см., например, Тасе и Хакен (1995)).
В качестве заключения упомяну несколько общих проблем.
1) Наш мозг — вычислительная машина? При обсуждении этой проблемы необходимо иметь в виду, что за прошедшие века понятие машины претерпело значительные изменения. Первоначально под машиной понимали простое устройство, например, рычаг или молот, для выполнения механической работы. В наши дни мы говорим о компьютере как о машине. Кроме того, в настоящее время к машинам применяют ряд понятий, заимствованных из биологии. В контексте конструирования машин мы встречаем такие понятия, как самоорганизация, самовосстановление, самосборка, самоуправление и т.д. Обратите внимание, как широко «самость» вторглась в мир машин! Поэтому когда речь заходит о сравнении мозга с машиной, необходимо тщательно оговаривать, какого рода машина имеется в виду. Мозг заведомо не является машиной в первоначальном смысле слова, а именно — созданным человеком устройством для выполнения определенных задач. Но по мере того как мы наделяем машину все новыми и новыми биологическими аспектами, различие между мозгом и машиной стирается все больше. Ситуация выглядит так, как если бы между человеческим мозгом и человеческим мозгом (это не опечатка!) шла некая престижная гонка. С одной стороны, человеческий мозг стремится построить машину, возможности которой были бы равны возможностям мозга, а с другой стороны, человеческий мозг стремится доказать свое превосходство перед машиной. (Нечто подобное мы обнаруживаем в сравнении человеческого мозга с компьютером. Эту ситуацию мы обсудили в гл. 18, и поэтому не будем повторяться.)
2) Мозг и чипы, или протезы мозга. Интересная задача — установление физической связи между нейронами и чипами. Решением ее занимается, например, Фромхерц (1994). Мы находимся здесь в самом начале пути, и делать сколько-нибудь определенные прогнозы относительно будущего развития, например, относительно чипов, имплантированных в поврежденный мозг или увеличения информационной емкости мозга (протезы мозга). Только будущее покажет, имеем ли мы дело с научной фантастикой или реальностью. Но с абстрактной точки зрения синергетики кооперативные эффекты могут приводить к такому же макроскопическому поведению систем с совершенно различными микроскопическими компонентами. Существенны лишь параметры порядка.
3) Креативность. Наконец, было бы уместно сказать несколько слов о креативности. До сих пор я полностью обходил молчанием эту проблему. В действительности креативность представляется мне самой глубокой из всех головоломок, связанных с мозгом. Под креативностью имеется в виду рождение идей, которые не рождались никогда прежде и более того — рождение которых в высшей степени маловероятно. Рождение новой идеи можно уподобить головоломке, при решении которой после многих безуспешных попыток из кусочков причудливой формы внезапно складывается картинка. Акт творения сравнительно легко охарактеризовать на словесном уровне, например, как конкуренцию и кооперацию различных идей в форме параметров порядка. По поводу такого рода определений трудно удержаться от критических замечаний: высказывать подобные сентенции — пустое дело, они не дают нам никакого операционального подхода и не дают рецепта, который позволял бы решить головоломку или найти новую фундаментальную идею. Может быть, хорошо, что природа гения все еще окутана тайной. (С.309-314)
Данный текст является ознакомительным фрагментом.