Полупроводниковый диод

We use cookies. Read the Privacy and Cookie Policy

Полупроводниковый диод

Полупроводниковый диод – двухэлектродный электронный прибор на базе полупроводникового (ПП) кристалла.

Понятие полупроводниковый диод объединяет приборы с разными принципами действия, которые имеют многофункциональное назначение. Система классификации полупроводниковых диодов соответствует общей системе классификации полупроводниковых приборов.

В наиболее широком классе электропреобразовательных полупроводниковых диодов различают: импульсные диоды, выпрямительные диоды, стабилитроны, диоды СВЧ (видеодетекторы, параметрические, смесительные, генераторные и усилительные, умножительные, переключательные). Среди оптоэлектронных полупроводниковых диодов выделяют ПП квантовые генераторы, светоизлучающие диоды и фотодиоды.

Наиболее многочисленны полупроводниковые диоды, действие которых базируется на применении свойств электронно-дырочного перехода, другими словами р-n-перехода. Если к р-n-переходу диода приложить напряжение в прямом направлении, т. е. подать на его р-область положительный потенциал, то потенциальный барьер, который соответствует переходу, снижается и начинается интенсивный ввод дырок из р-области в n-область и электронов из n-области в р-область. Тем самым по диоду начинает течь большой прямой ток. Если приложить напряжение в обратном направлении, то потенциальный барьер повышается и через р-n-переход протекает очень малый ток вторичных носителей заряда (обратный ток).

На резкой несимметричности вольтамперной характеристики (ВАХ) базируется работа выпрямительных диодов. Для выпрямительных устройств и других сильноточных электрических цепей производятся выпрямительные полупроводниковые диоды, имеющие допустимый выпрямленный ток до 300 А и максимально допустимое обратное напряжение в пределах от 20—30 В до 1—2 кВ. Полупроводниковые диоды аналогичного использования для слаботочных цепей имеют выпрямленный ток < 0,1 А и называются универсальными. При напряжениях, превышающих максимально допустимое обратное напряжение, ток резко возрастает, и появляется необратимый тепловой пробой р-n-перехода, который приводит к выходу полупроводникового диода из строя. С целью повышения максимально допустимого обратного напряжения до нескольких десятков кВ применяют выпрямительные столбы, в которых несколько идентичных выпрямительных полупроводниковых диодов соединены последовательно и расположены в общем пластмассовом корпусе. Инерционность выпрямительных диодов ограничивает частотный предел их использования (как правило, областью частот 50—2000 Гц).

Применение специальных технологических приемов (легирование кремния и германия золотом) позволило создать быстродействующие импульсные полупроводниковые диоды, применяемые, наряду с диодными матрицами, как правило, в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях, как правило, развивается не тепловой, а обратимый лавинный пробой р-n-перехода, т. е. резкое нарастание тока при почти постоянном напряжении, называется напряжением стабилизации. На использовании подобного пробоя базируется работа полупроводниковых стабилитронов. Стабилитроны общего назначения с напряжением стабилизации от 3—5 до 100—150 В используют в основном в стабилизаторах и ограничителях импульсного и постоянного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается высокая температурная стабильность, – в качестве источников опорного и эталонного напряжений.

В предпробойной области обратный ток диода подвержен значительным флуктуациям; это свойство р-n-перехода применяют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n-переходе обусловливает сдвиг фаз между напряжением и током в диоде, вызывая (при определенной схеме включения) генерирование СВЧ-колебаний. Это свойство успешно применяют в лавинно-пролетных полупроводниковых диодах, которые позволяют осуществлять генераторы с частотами до 150 ГГц.

Для преобразования и детектирования электрических сигналов в области СВЧ применяют смесительные полупроводниковые диоды и видеодетекторы, в большинстве которых р-n-переход расположен под точечным контактом. Это позволяет достигнуть малого значения емкости, а специфическое конструктивное оформление задает малые значения паразитных индуктивности и емкости, а также возможность монтажа диода в волноводных системах.

При подаче на р-n-переход обратного смещения, которое не превышает максимально допустимого обратного напряжения, он ведет себя как высокодобротный конденсатор, у которого емкость зависит от величины действующего на нее напряжения. Это свойство применяют в варикапах, используемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в умножительных диодах и варакторах, служащих для умножения частоты колебаний в диапазоне СВЧ, в параметрических полупроводниковых диодах, используемых для усиления СВЧ-колебаний. В этих полупроводниковых диодах стремятся уменьшить величину сопротивления, являющегося основным источником активных потерь энергии, и усилить зависимость емкости от максимально-допустимого обратного напряжения.

У р-n-перехода на базе вырожденного полупроводника область, которая обеднена носителями заряда, является очень тонкой (~ 10—2 мкм), и для нее становится значительным туннельный механизм перехода дырок и электронов через потенциальный барьер. На этом свойстве базируется работа туннельного диода, используемого в сверхбыстродействующих импульсных устройствах, в генераторах и усилителях колебаний СВЧ, а также обращенного диода, используемого в качестве детектора слабых сигналов и смесителя СВЧ-колебаний.

К полупроводниковым диодам относят также ПП приборы с двумя выводами, содержащие неуправляемую четырехслойную р-n-р-n-структуру и называют динисторами, а также Ганна диоды. В полупроводниковых диодах применяют и другие разновидности ПП структур: контакт металл – полупроводник и р-i-n-структуру, свойства которых во многом схожи с характеристиками р-n-перехода.

Свойство р-i-n-структуры менять свои электрические характеристики под воздействием излучения применяют в детекторах ядерных излучений и фотодиодах, устроенных таким образом, что ядерные частицы или фотоны могут поглощаться в активной области кристалла, которая непосредственно примыкает к р-n-переходу, и менять величину обратного тока последнего. Эффект излучательной рекомбинации дырок и электронов применяется в светоизлучающих диодах. К полупроводниковым диодам можно отнести также и полупроводниковые лазеры.

Большинство полупроводниковых диодов изготавливают, применяя планарноэпитаксиальную технологию, которая позволяет сразу получать до нескольких тысяч полупроводниковых диодов. В качестве полупроводниковых материалов для них используют главным образом кремний, а также германий и т. д., в качестве контактных материалов – золото, алюминий, медь. Для защиты кристалла полупроводникового диода его, как правило, помещают в металлокерамический, металлостеклянный, пластмассовый или стеклянный корпус.

В СССР для обозначения полупроводниковых диодов используют шестизначный шифр, первая буква которого характеризует применяемый полупроводник, вторая определяет класс диода, цифры означают порядковый номер типа, а последняя буква – его группу.

От своих электровакуумных аналогов полупроводниковые диоды отличаются значительно большими долговечностью и надежностью, лучшими техническими характеристиками, меньшими габаритами, меньшей стоимостью и поэтому вытесняют их в большинстве областей использования. С развитием ПП электроники совершился переход к производству наряду с дискретными полупроводниковыми диодами диодных структур в функциональных устройствах и ПП монолитных интегральных схемах, где полупроводниковый диод неотделим от всей конструкции устройства.

Данный текст является ознакомительным фрагментом.