Выдающиеся химические способности

Выдающиеся химические способности

Всем живым организмам для поддержания жизни, развития и размножения требуется энергия. Энергию можно получать из разных источников. Самым «дешевым» и универсальным источником энергии является солнце. Его энергию используют организмы, способные к фотосинтезу, это – цианобактерии, растения и некоторые простейшие.

Грибы и часть бактерий, которые питаются по типу животных, получают энергию, разрушая готовые органические вещества, поступающие в организм с пищей. Кислород, поступающий в клетки в процессе дыхания, окисляет белки, жиры и углеводы до более простых соединений. Окисление – это химическая реакция, похожая на обычное горение, только очень медленное. Такое биологическое «горение» происходит внутри живых клеток, не повреждая их. Как и при горении, при окислении выделяется энергия. Часть ее расходуется на обогрев организма, а часть идет на построение новых «грибных» или «животных» белков, жиров и углеводов.

Гетеротрофное питание

Хемотрофное питание

Автотрофное питание

Итак, энергию можно получать от солнца или при разрушении органических веществ. Оба эти способа бактерии освоили задолго до того, как на Земле появились первые растения, животные и грибы (фотосинтез был «изобретен» бактериями еще за 1,9 млрд. лет до появления первых предков растений). Благодаря выдающимся «химическим способностям» бактерии освоили еще один способ добывания энергии: они единственные существа на планете, которые научились использовать энергию химических связей неорганических соединений.

Вы уже знаете, что при химических превращениях молекулы одного вещества разрушаются и преобразуются в молекулы другого вещества. Этот процесс может сопровождаться выделением энергии. Например, горение водорода с образованием воды сопровождается выбросом энергии такой силы, что происходит взрыв.

Точно такую же реакцию для получения энергии проводят водородные бактерии. Конечно, никакого взрыва внутри клетки не происходит, энергия высвобождается медленно и поэтапно. Важное отличие биохимических реакций от химических состоит в том, что в живых клетках реакции протекают не сразу, а в несколько этапов.

Своеобразная группа метанообразующих бактерий получает энергию в процессе получения метана (это тот самый газ, который горит у нас на кухне) из углекислого газа и водорода. Учеными доказано, что запасам метана в недрах земли мы обязаны деятельности метанообразующих бактерий, длящейся уже многие сотни миллионов лет.

Не менее интересна деятельность железобактерий, которые получают энергию, превращая различные соединения железа в гидрат оксида железа, или попросту – в ржавчину. Пятна ржавчины могут встречаться на болотах, в стоячих озерах и медленных ручьях – это следы жизнедеятельности железобактерий. Интересно, что в отличие от серобактерий, которые накапливают серу внутри клеток, железобактерии выделяют оксиды железа на поверхность клеток: в итоге вокруг клеток формируются своеобразные железные доспехи.

Железобактерии в чехле гидрата окиси железа

Серобактерии обеспечивают себя энергией, получая серу из сероводорода, при этом в местах постоянного выхода сероводорода (возле вулканов) образуются залежи самородной серы.

Другие серобактерии получают энергию, превращая серу в соли серной кислоты. Тем самым серобактерии оказывают огромную услугу растениям, которые могут усваивать необходимую для построения растительных белков серу только в виде растворимых в воде солей серной кислоты.

В непроглядной тьме подводных глубин, куда не попадает ни один лучик света, серобактерии обеспечивают энергией целое сообщество глубоководных организмов.

Это может показаться странным, но жизнь в необъятных океанских просторах нашей планеты сосредоточена в самых поверхностных слоях, а толща воды и дно представляют собой практически мертвую пустыню. Такое неравномерное распределение жизни в океане легко объяснимо. Растения, которые кормят все остальные организмы, могут расти только на свету, поэтому глубже 200 м вы не встретите ни одной водоросли – там для них слишком мало света. Те немногие организмы, которые все–таки выживают на глубинах, перебиваются остатками погибших растений и животных, постепенно оседающих на дно с поверхности водоемов. Сами понимаете, что на таком скудном рационе может выжить очень ограниченное число животных.

Но оказалось, что темные глубины океанов далеко не так бедны жизнью, как это представлялось раньше. В 70–х годах XX века на глубинах от 2600 до 6000 м в подводной «пустыне» были обнаружены настоящие «оазисы », где численность и биомасса живых организмов в 1000–10 000 раз превосходят обычные для таких глубин. Как образовались эти глубоководные «оазисы»?

Богатые очаги жизни на дне океанов находят вокруг действующих подводных вулканов, где температура воды может достигать +40°С (из–за страшного давления она не закипает) и где вместе с магмой из глубины Земли выбрасываются огромные количества сероводорода, метана и углекислого газа. Вот в таких, мягко говоря, неподходящих для ^кизни условиях обитают многочисленные жители глубоководных «оазисов».

Прежде всего бросаются в глаза заросли белых и коричневатых трубок длиной до 2,5 метра с торчащими из них ярко–красными султанами щупалец. Эти трубки строят гигантские черви вестиментиферы.

Вестиментиферы не имеют кишечника, и питанием их обеспечивают симбиотические серобактерии, живущие в особой пористой ткани, занимающей до 30% объема тела червя. Здесь серобактерии не испытывают недостатка в сероводороде и углекислом газе, которыми они питаются, и надежно защищены от резких перепадов температур. Перепады же температуры в таких местах просто фантастические: при удалении от жерла подводного вулкана на каждые 6–8 см температура падает на 60°С. На расстоянии метра от вулкана температура воды понижается от +400°С до всего лишь +2?С!

Вестиментифера

Несмотря на свои гигантские размеры и защитные трубки, вестиментиферы становятся жертвами крупных крабов, которые обкусывают их щупальца. У подножия поселения вестиментифер скапливаются креветки и крабы–мусорщики, брюхоногие моллюски, мидии и различные рыбы, подъедающие остатки трапезы крабов. Поскольку трубки червей всегда покрыты «зарослями» бактерий, на них поселяются различные мелкие животные «соскабливатели», которые питаются этими бактериями и друг другом: различные ракообразные, моллюски, многощетинковые черви и другие животные.

И жизнь всех этих многочисленных и разнообразных животных зависит от невидимых серобактерий, ведь в темных глубинах океанов только эти микроорганизмы способны создавать органические вещества, которые затем словно по цепочке передаются вестиментиферам, хищным крабам, рыбам и многочисленным животным–мусорщикам.

Может быть, на других планетах и нет жизни, но подводные «оазисы» можно вполне назвать «другой планетой». Ведь мы привыкли, что источником пищи для животных являются растения, что свет – обязательное условие жизни создателей органических веществ.

А глубоководные серобактерии подводных вулканов способны в темноте создавать органические вещества только из сероводорода, углекислого газа и воды. Чтобы снабжать энергией целое сообщество живых организмов, этим бактериям не требуется ни солнечного света, ни готовой органики.

Возможности бактерий кажутся безграничными. Они способны вырабатывать сильнейшие яды и антибиотики; могут использовать энергию света, как растения, энергию готовых органических веществ, как животные и грибы; они единственные среди всех живых организмов умеют использовать энергию неорганических соединений. Трудно найти вещество, которое бактерии не смогли бы использовать в пищу.

Выдающиеся химические способности делают бактерий вездесущими и универсальными организмами. Попробуйте придумать условия, в которых бактерии не смогли бы выжить, и вы ответите на вопрос, почему они живут уже 3,5 млрд. лет и до сих пор являются самыми многочисленными обитателями Земли.