7. Устройства для блокировки загрузочных люков
7. Устройства для блокировки загрузочных люков
В целях безопасности для пользователя в СМА широко применяются блокировочные устройства и специальные термозамки (в дальнейшем — просто замки). Все эти устройства обеспечивают фиксацию загрузочного люка или верхней крышки СМА во время вращения барабана. В простейшем случае блокировочное устройство представляет собой электромагнит.
Защелки, запирающие люк СМА, все время удерживаются пружиной. При включении СМА в сеть и при нажатии кнопки открывания люка, защелка втягивается внутрь катушки электромагнита, и становится возможным открыть загрузочный люк. Гораздо большее распространение получили замки с термоэлементами. На рис. 7.1 представлено несколько типов термозамков.
Рис. 7.1. Некоторые типы блокировочных термозамков
Основу их конструкции составляют специальные термоэлементы и биметаллическая пластина (одна или две). Термоэлемент представляет собой полупроводниковый резистор с положительным температурным коэффициентом. Этот резистор резко увеличивает свое сопротивление, когда превышена его некоторая характеристическая температура. Подобные резисторы имеют название: РТС-термистор (Positive Temperature Coefficient), а комбинация термоэлемента с биметаллической пластиной называется РТС+биметалл.
Конструкций подобных замков — великое множество, но мы подробно рассмотрим принцип действия и устройство самых распространенных.
На рис. 7.2 показано внутреннее устройство термозамков с плоским РТС-термистором.
Рис. 7.2. Типы замков с плоским термоэлементом
После закрывания крышки или загрузочного люка СМА на выводы замка подается напряжение питания (в данном случае 220 В). В течение нескольких секунд термистор нагревается сам и нагревает биметаллическую пластину, к которой он прижимается одной из контактных пружин. Биметаллическая пластина при нагреве изгибается, контакты замыкаются и остаются в таком положении в течение всего времени работы СМА, пропуская напряжение питания на электросхему СМА. Также при замыкании контактов замка попутно приводится в действие запорный механизм, фиксирующий крышку или дверцу загрузочного люка.
По окончании программы стирки напряжение питания с замка снимается, термоэлемент и биметаллическая пластина остывают (примерно 2–4 минуты), и становится возможным открыть люк.
Электрическая схема таких замков проста и показана на рис. 7.3.
Рис. 7.3. Схема термозамка
Как видим, вывод N — общий, таким образом, при подаче напряжения питания на выводы N и L замка замыкается пусковой контакт и напряжение питания с вывода С начинает поступать на остальную часть электросхемы СМА. РТС-термистор может иметь и другую форму — например, круглую, в виде таблетки. Замок с подобным термистором показан на рис. 7.4.
Рис. 7.4. Тип замка с круглым термоэлементом в виде таблетки
Многие замки имеют дополнительные пары контактов, которые обеспечивают полную защиту от включения СМА с открытой крышкой.
Также и количество термоэлементов может быть больше — например, на рис. 7.5 показан замок с двумя круглыми термоэлементами и с дополнительными контактами.
Рис. 7.5. Замок с двумя термоэлементами
Рассмотрим еще несколько типов замков более сложных конструкций. На рис. 7.6 показаны два замка также с круглыми термоэлементами.
Рис. 7.6. Типы замков с перекидывающимися контактами и с круглым термоэлементом
В качестве исполнительных в этих замках применены перекидывающиеся контакты — такой же конструкции, как в датчиках давления. Контакты переключаются специальным коромыслом на шарнире. Принцип действия коромысла показан на рис. 7.7: при подаче напряжения на термоэлемент нагреваются также биметаллические пластины сверху и снизу «таблетки», вследствие чего коромысло переключает контакты.
Рис. 7.7. Принцип действия термозамка с круглым термоэлементом в виде таблетки
И наконец, рассмотрим еще один интересный замок — он комбинированного типа: в нем и РТС+биметалл и электромагнит. На рис. 7.8 он также показан в разобранном виде.
Рис. 7.8. Термозамок с электромагнитом
Этот замок содержит дополнительный РТС-резистор, который ограничивает ток через катушку электромагнита. На рис. 7.9 приведен чертеж этого замка.
Рис. 7.9. Чертеж термозамка с электромагнитом
При закрывании крышки СМА замок получает импульс от электронного модуля через контакт 3.
Импульс подается на электромагнит через РТС-резистор. Подвижной механизм из рычага и кулачка вращает храповую зубчатую шестерню, которая приводит в действие запирающий механизм замка. При открывании крышки замок получает от электронного модуля два импульса. При этом подвижный механизм делает два движения, и после этого крышку можно открыть сразу. Электрическая схема комбинированного замка приведена на рис. 7.10.
Рис. 7.10. Электрическая схема термозамка с электромагнитом
Еще один замок показан на рис. 7.11. Этот замок с электромагнитом и также управляется импульсами с электронного модуля.
Рис. 7.11. Разновидность электромагнитного замка
Существуют также конструкции замков, которые не содержат РТС-термистора. Вместо него служит обмотка из высокоомного провода. При подаче напряжения питания на эту обмотку, она нагревается и попутно нагревает биметаллическую пластину, на которую и намотана. Эта пластина изгибается, замыкает соответствующие контакты и выдвигает упор, блокирующий крышку люка. На рис. 7.12 замок показан со снятой крышкой.
Рис. 7.12. Термозамок с обмоткой на биметалле — замок с низковольтным питанием
Обратим внимание: на крышке надпись — AC250V. Но вопреки этой надписи данный замок отличается низковольтным питанием!
Дело в том, что в электросхеме СМА этот замок включен последовательно с обмоткой сливного насоса-помпы, поэтому основная часть напряжения падает на обмотке насоса, а оставшихся 10–15 В вполне достаточно для разогрева биметаллического контакта замка. Нетрудно догадаться, что подобный замок действует только во время работы сливного насоса, т. е. во время промежуточных и окончательного отжимов.
Электросхема СМА с таким замком есть в приложении.
А теперь, в качестве исторической справки, познакомимся еще с одним блокировочным устройством. Это замок, имеющий сразу два вида блокировок двери загрузочного люка: пневматическую и механическую блокировки. Замок показан на рис. 7.13.
Рис. 7.13. Замок с двумя видами блокировок
Эта часть смонтирована на внутренней стороне загрузочного люка СМА, как и термозамки. На этой части установлен и основной микровыключатель. При закрывании дверцы люка этот микровыключатель подает напряжение питания на электросхему СМА. При незакрытой дверце СМА включить нельзя. При наполнении бака водой в основной части замка включается система гидроблокировки. Устроена эта система точно так, как и нижняя часть пневматических переключателей. Это небольшого диаметра пластмассовый корпус, в котором есть резиновая диафрагма (мембрана). Этот корпус с мембраной соединен параллельно со шлангом давления. При заливе воды в корпусе под мембраной повышается давление — диафрагма выгибается, и из верхней части корпуса выдвигается блокировочный штырь. Пока в баке есть вода, этот штырь блокирует непосредственно с защелкой дверцу загрузочного люка. Вторая часть замка смонтирована на ведущем моторе, и действие ее показано на рис. 7.14.
Рис. 7.14. Принцип действия механической блокировки
Принцип действия системы прост; при попытке открыть люк при вращающемся моторе «клювик» на шарнире откидывается в направлении вращения шкива мотора, и в этом случае тросик, который соединяет обе части замка, не натягивается и замок остается заблокированным. Если открывание двери люка происходит при остановленном моторе, то в этом случае «клювик» упирается в ремень, тросик натягивается и разблокирует замок, дверца люка открывается. Как видим, замок довольно сложен, содержит много деталей и требует регулировки зазора между ремнем и «клювиком». Производители сравнительно недавно отказались от такого замка (а устанавливали его больше десяти лет в СМА марок General Electric, Holpoint и некоторых других). По-видимому, дело было в том, что при неисправности сливного наcoca или засорении системы слива в баке оставалась вода и без помощи специалиста становилось невозможным открыть загрузочный люк.
Кроме того, с течением времени стачивался «клювик», что также препятствовало открыванию двери. Кстати, все блокировки можно было легко отключить. Можно было пережать шланг давления, идущий к мембране с выдвижным штырем.
Либо можно было снять рычаг с подвижным «клювиком» и двумя планками на винтах зажать тросик так, чтобы исключить его перемещение, т. е. просто обеспечить постоянно натянутое его положение.
Данный текст является ознакомительным фрагментом.