19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
Проверка статистических гипотез – это один из основных методов математической статистики, который используется в эконометрике.
С помощью методов математической статистики можно проверить предположения о законе распределения некоторой случайной величины (генеральной совокупности), о значениях параметров этого закона (например, математического ожидания или дисперсии), о наличии корреляционной зависимости между случайными величинами, определенными на множестве объектов одной и той же генеральной совокупности.
Предположим, что на основании имеющихся данных у исследователя есть основания выдвинуть предположения о законе распределения или о параметре закона распределения случайной величины (или генеральной совокупности, на множестве объектов которой определена эта случайная величина). Задача проверки статистической гипотезы заключается в подтверждении или опровержении этого предположения на основании выборочных (экспериментальных) данных.
Статистической гипотезой называется любое предположение о виде неизвестного закона распределения или о параметрах известных распределений.
Параметрической гипотезой называется гипотеза о значениях параметров распределения или о сравнительной величине параметров двух распределений.
Примером параметрической статистической гипотезы является гипотеза о равенстве математических ожиданий двух нормальных совокупностей.
Непараметрическими гипотезами называются гипотезы о виде распределения случайной величины.
Проверка статистической гипотезы означает проверку соответствия выборочных данных выдвинутой гипотезе.
Параллельно с выдвигаемой основной гипотезой рассматривают и противоречащую ей гипотезу, которая называется конкурирующей или альтернативной. Противоречащая гипотеза считается справедливой, если основная выдвинутая гипотеза отвергается.
Нулевой, основной или проверяемой гипотезой называется первоначально выдвинутая гипотеза, которая обозначается Н0.
Конкурирующей или альтернативной гипотезой называется гипотеза, которая противоречит основной гипотезе Н0 и обозначается Н1.
Например, основная гипотеза Н0 состоит в том, что математическое ожидание ? равно значению ?0. В этом случае конкурирующая гипотеза Н1 может состоять в предположении, что математическое ожидание ? не равно (больше или меньше) значения ?0:
Н0: ?=?0;
Н1: ???0,
или
Н1: ?>?0,
или
Н1: ?<?0.
Простой гипотезой называется гипотеза, которая содержит только одно предположение. Например, гипотеза о том, что параметр распределения Пуассона ? равен значению ?0, является простой. Основная гипотеза о том, что математическое ожидание нормального распределения равно 5 (при известной дисперсии), т.е.
Н0: а=5,
также является простой.
Сложной гипотезой называется гипотеза, которая состоит из нескольких простых гипотез. Например, сложная гипотеза вида:
Н0: ?>4,
состоит из множества простых гипотез вида:
Н0: ?>m,
где m – это люблое число, большее четырёх.
Данный текст является ознакомительным фрагментом.