28. Линейная модель множественной регрессии стандартизированного масштаба
28. Линейная модель множественной регрессии стандартизированного масштаба
Помимо классического метода наименьших квадратов для определения неизвестных параметров линейной модели множественной регрессии ?0…?m используется метод оценки данных параметров через ?-коэффициенты (коэффициенты модели регрессии в стандартных масштабах).
Построение модели множественной регрессии в стандартизированном или нормированном масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.
Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение ?.
Факторная переменная х переводится в стандартизированный масштаб по формуле:
где xij – значение переменной xjв i-том наблюдении;
G(xj) – среднеквадратическое отклонение факторной переменной xi;
Результативная переменная у переводится в стандартизированный масштаб по формуле:
где G(y) – среднеквадратическое отклонение результативной переменной у.
Если между исследуемыми переменными в исходном масштабе является линейной, то процесс стандартизации не нарушает этой связи, поэтому стандартизированные переменные будут связаны между собой линейно:
Неизвестные коэффициенты данной функции можно определить с помощью классического метода наименьших квадратов для линейной модели множественной регрессии. В этом случае минимизируется функционал F вида:
В результате минимизации данного функционала получим систему нормальных уравнений, переменными в которой будут являться парные коэффициенты корреляции между факторными и результативной переменной. Такой подход основывается на следующем равенстве:
Система нормальных уравнений для стандартизированной модели множественной регрессии имеет вид:
В связи с тем, что полученная система нормальных уравнений является квадратной (количество уравнений равняется количеству неизвестных переменных), то оценки коэффициентов
можно рассчитать с помощью метода Крамера, метода Гаусса или метода обратных матриц.
Рассчитанные из системы нормальных уравнений ?-коэффициенты в стандартизированном масштабе необходимо перевести в масштаб исходных данных по формулам:
Рассмотрим метод Гаусса решения квадратных систем линейных уравнений. Суть данного метода заключается в том, что исходная квадратная система из n линейных уравнений с n неизвестными переменными преобразовывают к треугольному виду. Для этого в одном и уавнений системы оставляют все неизвестные переменные. В другом уравнении сокращают одну из неизвестных переменных для того, чтобы число неизвестных стало (n-1). В следующем уравнении сокращают две неизвестных переменных, чтобы число переменных стало (n-2). В результате данных преобразований исходная система уравнений примет треугольный вид, первое уравнение которой содержит все неизвестные, а последнее – только одну. В последнем уравнении системы остаётся (n-(n-1)) неизвестных переменных, т. е. одна неизвестная переменная, которая называется базисной. Дальнейшее решение сводится к выражению свободных (n-1) неизвестных переменных через базисную переменную и получению общего решения квадратной системы линейных уравнений.
Данный текст является ознакомительным фрагментом.