1.2.2.4. БПЛА с машущим крылом

We use cookies. Read the Privacy and Cookie Policy

1.2.2.4. БПЛА с машущим крылом

БПЛА с машущим крылом (flapping-wing UAV) основаны на бионическом принципе – копировании движений, создаваемых в полете летающими живыми объектами – птицами и насекомыми.

Хотя в этом классе БПЛА пока нет серийно выпускаемых аппаратов и практического применения они пока не имеют, во всем мире проводятся интенсивные исследования в этой области. В последние годы появилось большое количество разных интересных концептов малых БПЛА с машущим крылом.

Главные преимущества, которые имеют птицы и летающие насекомые перед существующими типами летательных аппаратов – это их энергоэффективность и маневренность. Если разработчикам "машущих" БПЛА удастся по показателям энергоэффективности и маневренности приблизиться к тому, что уже имеется в живой природе, то тогда их усилия будут не напрасными, и можно ожидать, что этот класс аппаратов начнет находить свое применение.

Аппараты, основанные на имитации движений птиц, получили название орнитоптеров (англ.: omithopter), а аппараты, в которых копируются движения летающих насекомых – энтомоптерами (англ.: entomopter) [43].

Орнитоптеры.

При создании БПЛА, имитирующих движения птиц, много внимания уделяется механическому приводу крыльев. Механические передачи должны обеспечивать необходимый набор движений и при этом быть простыми и легкими. Кроме махов вверх/вниз с нужной частотой, система управления движением в подходящие по внешним условиям моменты должна реализовывать режим парения, для того, чтобы аппарат мог максимально эффективно использовать набегающие и восходящие потоки воздуха.

Показательным примером в этой области является БПЛА SmartBird германской фирмой Festo, которая известна своими разработками в области бионики. Созданный ей аппарат внешне действительно очень похож на птицу (рис. 1.56). Он выполнен по образу и подобию реальной птицы – серебристой чайки, но несколько крупнее ее по габаритам. Аппарат способен не только собственно летать, но и совершать самостоятельные взлет и приземление. Крылья SmartBird движутся не только вверх и вниз, но также и поворачиваются вокруг собственной оси, что обеспечивает движениям максимальную точность.

БПЛА SmartBird имеет длину 1 м, размах крыльев 2 м, массу 450 г. Питание осуществляется от литий-полимерной двухэлементной аккумуляторной батареи (7,4 В). Потребляемая мощность в режиме выполнения маховых движений всего 23 Вт, в режиме парения еще меньше – 18 Вт.

Аппараты, подобные описанному, в скором времени вполне смогут найти свое место на рынке БПЛА. Военные ведомства различных стран уже оценили очевидные достоинства этих аппаратов при выполнении разведывательных и диверсионных операций.

Рис. 1.56. Орнитоптер SmartBird компании Festo (Германия, 2011): а – создатели аппарата; б – вид сзади; в – демо-макет механических передач; г – различные фазы полета

Энтомоптеры.

БПЛА, имитирующие движения летающих насекомых, условно можно подразделить на имитаторы четырехкрылых и имитаторы двукрылых насекомых. Четырехкрылые (стрекозы, бабочки) совершают более сложные движения, чем двукрылые, и возможностей управления полетом у них гораздо больше. На рис. 1.57 показан пример четырехкрылого энтомоптера, разработанного компанией Festo.

Рис. 1.57. Эитомоитер Вionicopter компании Festo (Германия, 2013)

Длина корпуса аппарата составляет 44 см, размах крыльев 63 см. Крылья выполнены из углеродного волокна и полиэфирной плёнки. Показатель частоты взмахов крылом относительно невысокий – 15-20 Гц. Масса аппарата составляет всего 175 г.

Управление полётом робота осуществляется со смартфона. BionicOpter имеет встроенный ARM-микроконтроллер, обеспечивающий стабилизацию полёта. Аппарат оснащен одним основным электродвигателем и восемью сервоприводами. На борту имеется набор сенсоров для предотвращения столкновений с препятствиями. Схема питается от двухсекционного литийполимерного аккумулятора 7,4 В.

Конструкция BionicOpter обеспечивает этому аппарату множество возможностей маневрирования. Каждое крыло, кроме маховых движений, может совершать вращательные движения вокруг своей оси и угловые перемещения в горизонтальной плоскости. Кроме того, хвостовая часть может изгибаться, меняя положение центра тяжести. Благодаря таким возможностям управления, аппарат может, например, мгновенно зависать на месте и перемещаться в горизонтальной плоскости в любую сторону, не изменяя при этом угла тангажа.

Разработки БПЛА, имитирующие двукрылых насекомых, развиваются, в основном, в направлении микроминиатюризации аппаратов. Здесь все достижения, видимо, еще впереди. Развитие технологий новых сверхлегких материалов, источников питания, наноэлектроники и интеллектуального управления в ближайшие годы позволят создать микроминиатюрные насекомоподобные БПЛА, приближающиеся к живым существам и по выполняемым функциям, и по размеру. Появятся (уже появляются) новые концепции управления коллективами микророботов, перед которыми можно будет ставить цели, ранее не достижимые, т.к. эти формации воздушных микророботов будут обладать большими возможностями в силу таких их качеств, как коллективная живучесть, способность многовариантного решения задач, незаметность перемещений, способность к массированным и непрерывным миссиям и т.д.

Пример разработки миниатюрного двукрылого энтомоптера показан на рис. 1.58. Это микро-БПЛА Mobee (Monolithic Bee), разработанный Лабораторией микроробототехники Гарвардского университета (США). Его особенность в том, что он изготовлен по интегральной многослойной технологии. В основе – тонкая углепластиковая пластина, в которой лазером сделаны все необходимые вырезы, затем нанесено еще множество металлических и неметаллических слоев, формирующих необходимые электронные и микроэлектромеханические устройства, включая сенсоры, радиотехнические устройства и актуаторы крыльев [44].

Рис. 1.58. Энтомоптер Mobee – разработка Harvard Microrobotics Lab (США, 2011)