Водообеспечение в океане
Водообеспечение в океане
Человеку, оказавшемуся на борту спасательной лодки в тропиках, некуда укрыться от тепла, поступающего со всех сторон: с прямой солнечной радиацией (она составляет 0,9-1,5 кал/см2/сек.) (Стенько, 1965), с лучами, отраженными от зеркальной глади океана, от нагретой солнцем оболочки лодки. Таким образом, в течение суток организм получает сотни тысяч калорий тепла.
В табл. 15 представлены результаты наблюдений, проводившихся на борту ЭС «Витязь» в 1967 г.
Таблица 15. Суммарная солнечная радиация в тропической зоне Индийского океана (в кал/см2/сутки).
В борьбе с перегревом организму приходится использовать все защитные механизмы и, в первую очередь, потовыделительную систему, которая работает с максимальным напряжением. По данным исследователей, водопотери на солнце в тропической зоне океана достигают 740-810 г/час. (Просецкий, 1960а, б, 1966). Однако с каждой каплей пота, теряемого организмом, возрастает угроза обезвоживания. Возникает парадоксальная ситуация. С одной стороны, организму необходимо обеспечить охлаждение с помощью пота, а с другой – потоотделение увеличивает обезвоживание, так как потери жидкости нечем восполнить. Выход из нее подсказала практика.
Если верхнюю одежду смачивать водой, то она, испаряясь, будет выполнять охлаждающую функцию пота и, тем самым, поможет сберечь внутренние резервы жидкости. «При температуре 27-31° влажная одежда в дневное время уменьшает потоотделение на 83%. Таким простым способом при отсутствии тени можно более чем вдвое увеличить время выживания людей» (Браун, 1952).
Для определения величины водопотерь организма в тропической зоне океана и оценки эффективности различных методов защиты от теплового воздействия нами было проведено несколько серий экспериментов во время экспедиций на научно-исследовательских судах «Михаил Ломоносов» и «Витязь» в 1964-1975 гг[8]. В каждой серии экспериментов пять испытуемых находились в течение 3 час. на открытом участке палубы, защищенном от ветра «экраном». Ежечасно проводилось взвешивание на медицинских весах. Величина водопотерь определялась по изменению веса тела. Радиационные температуры регистрировались по зачерненному шаровому термометру. Исследования показали, что обнаженный человек на солнцепеке теряет при температуре 44-54° (по шаровому термометру) примерно 0,5 л жидкости в 1 час (1,3-1,6 л за 3 часа).
Во второй серии экспериментов испытуемые размещались под тентом из белого капрона. Эта небольшая теневая защита несколько снизила водопотери, составившие 230±15 мл/час.
В третьей серии испытуемые, находившиеся на солнцепеке, были одеты в майки из белого трикотажа с длинными рукавами, смоченные водой. По мере высыхания майки периодически увлажнялись. Взвешивание показало, что использование влажного белья уменьшило водопотери потоотделением до 170±13 мл/час. При этом самочувствие испытуемых и их теплоощущения значительно улучшились (Волович, Усков, 1967). Однако при длительном воздействии высоких температур все применяемые меры снижения водопотерь, хотя и замедлят процесс дегидратации, но не могут его остановить. Многосуточные эксперименты, проведенные на палубе корабля и в спасательных лодках при метеоусловиях, характерных для тропической зоны океана (рис. 137), позволили проследить динамику этого процесса.
Рис. 137. Метеорологические условия при проведении 5-суточного эксперимента на спасательной шлюпке в океане. 1 – радиационная температура; 2 – температура воздуха; 3 – относительная влажность воздуха.
Как видно из табл. 16, уже за первые сутки эксперимента испытуемые теряли в среднем 2787±453 мл жидкости. Поскольку по условиям эксперимента водопотребление было ограничено до 0,8-1,0 л/сутки, потеря жидкости организмом не компенсировалась, дегидратация, постепенно нарастая, достигла на 5-е сутки 8-8,5% от первоначального веса тела (рис. 138).
Таблица 16. Динамика водопотерь в пятисуточном эксперименте (в мл).
Рис. 138. Водопотери испытуемых в 5-суточном эксперименте. Испытуемые: 1 – В-ч; 2 – У-в; 3 – Л-в; 4 – Б-в; 5 – усредненные значения дегидратации для пяти испытуемых.
Этот процесс сопровождался тепловой олигурией. Уже в 1-е сутки плавания диурез уменьшился почти вдвое. Как видно из данных табл. 17, в течение всего времени эксперимента суточная величина диуреза не превышала 405±31,8-627±50 мл.
Таблица 17. Изменение суточного диуреза в пятисуточных экспериментах в тропической зоне океана (в мл). Количество испытуемых – 52.
Наряду с этим было зафиксировано снижение содержания в моче микроэлементов (табл. 18). Так, например, на 5-е сутки эксперимента суточное выведение натрия снизилось по сравнению с 121,32±15,73 (фон) до 15,3±3,4 мэкв, а содержание хлора уменьшилось почти в 12 раз (с 162,8±17,5 до 8,1±2,1 мэкв). Изменения калиуреза были менее выражены, однако концентрация калия в суточной моче все же снизилась с 32,17±3,9 (фон) до 21,8±2,0 мэкв.
Таблица 18. Изменение содержания микроэлементов в суточной моче в пятисуточных экспериментах в тропической зоне океана (в мэкв). Количество испытуемых – 21.
В разделе «Некоторые вопросы водно-солевого обмена при высоких температурах» мы уже касались механизма этих процессов. Следует лишь добавить, что фактором, способствовавшим указанным изменениям солевого обмена, был недостаток их в аварийном рационе.
Биохимические исследования крови показали, что уровень содержания натрия в плазме в этом эксперименте был достаточно стабильным, свидетельствуя, что организм не испытывал натриевого «голодания» (табл. 19).
Таблица 19. Содержание натрия и калия в плазме испытуемых в пятисуточных экспериментах в тропической зоне океана (в мэкв). Количество испытуемых – 21.
Вместе с тем содержание калия в плазме периферической крови снизилось почти вдвое, что говорит о развивающемся калиевом дефиците. Причина этого явления лежит, по-видимому, в отсутствии физиологических компенсаторных механизмов, быстро устраняющих нарушения обмена калия в организме. Даже на 2-е сутки после окончания эксперимента содержание калия в плазме оставалось на низких цифрах.
При самом строгом режиме экономии воды рано или поздно наступает минута, когда запасы ее приходят к концу. Тяжелы страдания от жажды путника, заблудившегося в пустыне, но тысячекратней муки его в океане. Человек видит сверкающую водную гладь, слышит шепот волн, ощущает освежающее прикосновение брызг – и не может утолить жажду.
Правда, хроника морских катастроф знает случаи, когда жертвы кораблекрушений использовали морскую воду для сохранения жизни. 70 суток с лишним утолял жажду океанской водой Пун-Лим, моряк с торпедированного японцами во время второй мировой войны транспорта. Морская вода помогла выжить молодому флотскому врачу П. Ересько, 37 дней находившемуся в шлюпке в Черном море без пресной воды (Ересько, 1945; Ермолович, 1962).
«Если считать со времени отплытия из Монако, – писал Ален Бомбар, – то в течение четырнадцати дней я утолял жажду морской водой».
«Я выпивал не меньше двух кружек морской воды и не испытывал от этого ни малейшего вреда», – отмечал в своем дневнике бесстрашный мореплаватель-одиночка, капитан бальсового плота «Севен систерз» Вильям Виллис (1959).
Казалось бы, что доводы Бомбара, Виллиса и случаи, когда морская вода использовалась людьми, бедствовавшими в океане, достаточно убедительны. Однако противники ее использования не складывали оружие, и первым был либерийский врач Ханнес Линдеман, который в одиночку дважды пересек Атлантический океан (Глязер, 1962). После опубликования рекомендаций Бомбара в печати Линдеман выступил с резким возражением: «С тех пор как существует человечество, всем известно, что пить морскую воду нельзя. Но вот в Европе появилось сообщение об исследовании, утверждающем обратное, при условии, что организм еще не обезвожен. В газетном лесу оно расцвело пышным цветом и получило горячий отклик у дилетантов. Конечно, морскую воду можно пить, можно и яд принимать в соответствующих дозах. Но рекомендовать пить морскую воду потерпевшим кораблекрушение – по меньшей мере преступление» (Lindemann, 1960).
Экспериментальные исследования, выполненные французскими военно-морскими врачами G. Aury в 1954 г. и S. Longe в 1957 г., не внесли ясности в эту проблему. С одной стороны, изменения, обнаруженные у испытуемых-добровольцев, пивших морскую воду небольшими порциями в течение 3-5 дней, оказались незначительными: несколько возрастало содержание в крови натрия, хлора, мочевины, чуть снизился щелочной резерв крови, и количество выделенной мочи значительно превышало выпитую воду.
Но, пожалуй, самым ярким доказательством токсического действия морской воды стал результат работы английских исследователей McCance R. A., Ungly С. С., Grosfill J. W. Z., Widdowson E. M.. (1956). Они тщательно изучили и проанализировали 448 случаев катастроф, постигших британские торговые суда во время второй мировой войны. Значительной части матросов и пассажиров из 27 000 человек, находившихся на борту этих судов, удалось спастись. Многим помощь была оказана сразу же после катастрофы. Но примерно 5 000 человек еще много дней после кораблекрушения носило по волнам в спасательных шлюпках и плотах. И вот оказалось, что из 997 человек, утолявших жажду морской водой, погибло 387 (38,8%). В то же время из 3994 моряков, не употреблявших для питья соленую воду, умерло лишь 133 (3,3%). Если даже принять во внимание, что часть людей погибла по другим причинам, что в первой группе часть людей не пила морской воды, а во второй находились моряки, соблазнившиеся морской водой, все же приведенные цифры были весьма убедительными.
Загадка столь губительного действия морской воды заключена в растворенных в ней солях. В воде морей и океанов растворены соли натрия, кальция, калия, магния и многих других элементов. Иногда их совсем немного, всего 3-4 г/л воды, как, например, в Финском заливе. В Азовском и Черном морях солей несколько больше – 10-18 г/л. В океанах их количество возрастает до 32-35 г/л. Более 40 г соли содержится в каждом литре волы Красного моря.
Одно из поразительных свойств человеческого организма – умение сохранять гомеостаз – постоянство своей внутренней среды. За этим бдительно следят бесчисленные живые датчики – хеморецепторы, барорецепторы, терморецепторы. За концентрацией различных веществ, растворенных в жидких средах организма, – плазме крови, лимфе, межклеточной жидкости – наблюдают свои дозорные – осморецепторы.
Обычно с пищей человек получает примерно 15-25 г соли в день, главным образом хлористого натрия. Этого количества достаточно для удовлетворения его потребностей. Но едва организм получает излишек солей, как осморецепторы немедленно поднимут тревогу и не успокаиваются до тех пор, пока утраченное равновесие не будет восстановлено. Избыточные соли выводятся через почки, на которых лежит обязанность обеспечивать осмотический гомеостаз. По данным В. С. С. Леделла (Ladell, 1965), прием 500,0 мл 3-4%-ного раствора соли увеличивает мочеотделение с 0,36 до 1,56 мл/мин, т. е. почти в 5 раз. Известно, что концентрационная способность почек не превышает 2% (Данилов, 1956; Кравчинский, 1963; Гинецинский, 1964; и др.). Стало быть, на выведение из организма каждого лишнего грамма соли потребуется не менее 50 мл воды. Если выпить 100 мл океанской воды, содержащей хотя бы 3 г солей, то для их удаления потребуется 150 мл. Значит, организму придется истратить из своих внутренних резервов дополнительно 50 мл воды. И это при развивающемся обезвоживании, когда каждый грамм жидкости на вес золота. Некоторые физиологи высказывали мнение, что некоторая часть выпитой морской воды, примерно 15-20%, все же остается в организме (Gamble, 1944; Ladell, 1965; и др.). Но, даже согласившись с ними, нетрудно подсчитать, что для удовлетворения минимальных потребностей человека в жидкости придется выпивать ежедневно 8-10 л горько-соленой океанской влаги.
Возможно ли это? Ведь порция всего в 300-500 мл вызывает раздражение слизистой желудка и кишечника (Schafer, 1950; и др.). Однако главная опасность не в этом.
Максимальная теоретическая работоспособность почек соответствует 5760 кал/сутки. На выведение солей, растворенных в 1 л океанской воды, необходимо затратить 970 кал (Margaria, 1957). (К тому же концентрационная способность почек при длительной нагрузке постепенно снижается.) Рано или поздно почки перестанут справляться с непосильной нагрузкой, и концентрация солей в крови и тканях начнет стремительно нарастать. Поражаются почки, желудок, кишечник. Но особенно уязвима к действию солей центральная нервная система (Hervey, 1955). Поэтому среди жертв кораблекрушения, не выдержавших соблазна утолить жажду океанской водой, так часто наблюдались психические расстройства, сопровождавшиеся попытками к самоубийству.
Вот как описывает картину гибели человека от интоксикации, вызванной океанской водой, известный английский специалист по выживанию М. Critchley (1943).
«Жажда утоляется лишь очень ненадолго, и по истечении короткого промежутка времени человек испытывает еще большую потребность в воде. Затем он затихает, его охватывает апатия, глаза стекленеют, губы, рот и язык высыхают, появляется специфический неприятный запах изо рта. Часа через два у человека начинается бред, сначала спокойный, потом лихорадочный. Сознание затемняется, в уголках губ появляется пена, цвет лица меняется. Агония, как правило, протекает бурно, и человек умирает, не приходя в сознание».
Несмотря на запреты и неприятный горько-соленый вкус, люди, мучимые жаждой, все же пьют океанскую воду, и это приносит им некоторое облегчение. Но то небольшое облегчение, которое они чувствуют вначале, лишь маскирует разрушительное действие солей на клетки и ткани организма (Hervey, 1945).
В поисках возможностей использовать для спасения терпящих бедствие в океане морскую воду физиологи решили попытаться ввести ее в организм другим путем – через прямую кишку. Толстый кишечник – место в пищеварительном тракте, где главным образом происходит обратное всасывание жидкости из пищевой массы – химуса. Если вода всасывается быстрее, чем соли, то организм может использовать часть введенной морской воды для своих нужд, а оставшийся в прямой кишке концентрированный солевой раствор можно будет без труда удалить.
Эксперимент, который провел на себе англичанин Грахам в 1916 г., казалось, подтвердил правильность этой идеи. Ежедневно, в течение целой недели, он вводил себе клизмой по 7,5 л морской воды и при этом не только не наблюдал каких-либо нарушений деятельности желудка, кишечника, почек, но даже не испытывал жажды. Однако английские морские врачи Кришли и Алисон, проделав аналогичные опыты на нескольких испытуемых, пришли к отрицательному выводу. К этой идее вернулись лишь в 40-х годах.
Четверо испытателей, участвовавших в экспериментах, были посажены на жесткую питьевую норму, и, как только у них появились выраженные явления обезвоживания, каждому ввели в прямую кишку по 200 мл 3,3%-ного солевого раствора. Однако соленая вода не только не облегчила их состояния, наоборот, самочувствие испытуемых ухудшилось, явления обезвоживания прогрессивно нарастали: усилилась жажда, головная боль, слабость. Временами наступало затемнение сознания. А в пробах, взятых из прямой кишки, содержание солей резко уменьшилось: соли диффундировали через стенку кишечника значительно быстрее, чем вода (Bradich et al., 1942). Таким образом, и этот путь использования морской воды оказался неприемлемым.
И все же спор между сторонниками и противниками морской воды продолжался. Более того, после широкого опубликования в печати рекомендаций Бомбара и данных экспериментов Ж. Ори, среди моряков стало распространяться убеждение, что опасность питья морской воды преувеличена.
В связи с этим Комитет по безопасности мореплавания в 1959 г. обратился к Всемирной организации здравоохранения с просьбой высказать свое компетентное заключение по этой проблеме.
В Женеву были приглашены крупнейшие специалисты по проблеме выживания в океане, биологи и физиологи, профессор Р. А. Маккенс и Ф. В. Баскервиль из Англии, швейцарец доктор Ж. Фабр, французский профессор Ш. Лабори и американец А. В. Вольф. Эксперты обстоятельно изучили материалы многочисленных экспериментов на людях и лабораторных животных, проанализировали случаи использования морской воды терпящими бедствие и пришли к единодушному мнению, что морская вода разрушительно действует на организм человека. Она вызывает глубокие расстройства многих органов и систем (The Danger of drinking Seawater, 1962).
Поэтому в памятках и инструкциях, выпускаемых в нашей стране и за рубежом, питье морской воды в условиях выживания на спасательных лодках и плотах запрещено.
Так чем же утолить жажду, если пресной воды нет, а помощь запаздывает?
Рыбьим соком, – утверждает Ален Бомбар.
Сколько же потребуется рыбы, чтобы влагой, содержащейся в ее мышцах, напоить человека, страдающего от жажды?
Тело рыбы почти на 80% состоит из воды. Но извлечь ее не так-то просто. Необходимо специальное приспособление, нечто вроде портативного пресса. Однако и с его помощью отжать удается не так уж много. Например, из 1 кг морского окуня можно получить лишь 50 г сока, 1 кг мяса корифены дает около 300 г, зато из мяса тунца и трески можно нацедить до 400 г мутноватой, пахнущей рыбой жидкости (Hunter, 1957). Возможно, этот «напиток», не очень приятный на вкус, и помог бы решению проблемы, если бы не одно серьезное «но» – высокое содержание в нем различных веществ, небезразличных для человека (табл. 20).
Таблица 20. Состав рыбьего сока.
Как будет на них реагировать организм?
Ответ на этот вопрос попытался получить английский ученый С. G. Hunter (1957). Восемь испытуемых поместили в тепловую камеру до появления отчетливых признаков обезвоживания. Затем четверым (контрольная группа) выдали по 250 мл воды, а остальные, помимо воды, получили дополнительно по 750 мл рыбьего сока. Хотя добавка жидкости была достаточно весомой, состояние испытуемых нисколько не улучшилось. Зато мочеотделение у них возросло почти вдвое. Организм поспешил избавиться от содержавшихся в соке веществ, которые грозили нарушить осмотический баланс, и истратил на это почти 400 г жидкости из своих внутренних резервов (рис. 139).
Рис. 139. Водопотери организма при питье рыбьего сока.
Так может ли рыбий сок заменить пресную воду?
Эксперимент Хантера заставляет отнестись к этой рекомендации с осторожностью.
Многочисленные памятки и инструкции для терпящих бедствие в океане рекомендуют: собирайте в ночное время росу, пополняйте запасы пресной воды за счет дождя. Дожди нередки в тропиках. В них наше спасение.
Но могут ли капли росы напоить жаждущего? А надежды на дождь долгое время могут оставаться неосуществимыми. Ален Бомбар приветствовал первый дождь лишь на 23-е сутки плавания. Уильям Уиллис (Виллис, 1959) за 116 дней путешествия на плоту воспользовался небесной влагой только один раз, да и то лишь на 76-е сутки после выхода из порта Каляо, а по свидетельству Алена Брэна, соратника знаменитого путешественника Эрика фон Бишопа по экспедиции на плоту «Таити-Нуи», «против всех ожиданий, за два с половиной месяца плавания не выпало ни одного хорошего дождя» (Даниельссон, 1962а; Де Бишоп, 1966).
Итак, дождь, роса, рыбий сок – все это источники, на которые трудно полагаться с уверенностью. Правда, опытные капитаны всегда заранее заботились, чтобы на спасательных шлюпках был запас пресной воды. Но в жарком климате вода не смогла сохраняться подолгу в деревянных бочонках, она быстро «зацветала», приобретала неприятный запах и отвратительный вкус. Ее часто приходилось заменять свежей. Это было хлопотно, да, к тому же, на кораблях, подолгу плавающих в тропиках, запас питьевой воды и без того был ограничен.
В последние десятилетия на смену флягам и анкеркам пришли «водяные консервы» (рис. 140). Воду, после специальной обработки, заключали в запаянные жестяные банки по 300-500 мл. Там она могла сохраняться многие месяцы. Но много ли банок можно уложить в маленький спасательный плот?
Рис. 140. «Водяные консервы».
И снова взоры моряков и ученых обратились к морской воде. Если ее нельзя пить такой, какая она есть, то надо избавиться от того, что делает ее опасной, – от солей. Например, соорудить перегонный куб и гнать опресненную дистиллированную воду, используя солнечное тепло. Стоило родиться идее, и, как грибы после дождя, появилось целое семейство разнообразных «перегонных устройств для терпящих бедствие».
Уже во время второй мировой войны стали выпускаться дистилляторы в виде цилиндров, выстланных изнутри слоем черной губки, которую пропитывали морской водой. Вода нагревалась солнцем, и охлажденный пар стекал в водосборник. Такие устройства давали до 700 мл воды в сутки (Fetcher, 1945).
Один из наиболее распространенных дистилляторов был сконструирован в виде шара из прозрачного пластика, напоминавшего большой детский мяч. Внутри его находился второй «мяч», несколько меньших размеров, сделанный из черного материала. Дистиллятор надо было заполнить морской водой, надуть воздухом и, привязав к лодке, пустить гулять по волнам. Солнце нагревало воду, пар проходил по системе трубок и, оседая на стенках, каплями пресной воды сбегал в пластиковый резервуар (рис. 141). Однако прибор этот страдал одним весьма существенным недостатком: в пасмурный день и в ночное время он бездействовал.
Рис. 141. Солнечный дистиллятор (схема американского дистиллятора). 1 – шипы, разъединяющие оболочки; 2 – петля; 3 – балластная трубка; 4 – тканевый дренаж для соленой воды; 5 – сифон для пресной воды; 6 – трубка для заполнения балласта; 7 – соединительный шнур; 8 – соединительный зажим; 9 – прозрачная пластиковая оболочка; 10 – внутренняя оболочка испарителя из черной ткани; 11 – резервуар для заливания морской воды; 12 – трубка для надувания опреснителя и соединения его с контейнером; 13 – контейнер для пресной воды.
Остроумный выход из положения нашли конструкторы английской фирмы «Дэнлоп», специализирующейся на изготовлении спасательного снаряжения. Их дистиллятор, выполненный в виде сферы из прозрачного материала, имел в нижней части специальную чашу, обрамленную тепловым экраном из черной пленки. Когда дистиллятор опускали за борт, между верхней его частью, обдуваемой воздухом, и нижней, находящейся в воде, создавалась разность температур. Вода в чаше начинала испаряться и, конденсируясь на внутренней поверхности верхней полусферы, по гидрофобному (водоотталкивающему) пластику стекала в водосборник, из которого ее можно было отсасывать через специальную трубку. Новый дистиллятор мог действовать в любую погоду, днем и ночью и давать до 1,5 л воды в сутки.
Оригинальная конструкция опреснителя была предложена американскими инженерами. Они вмонтировали в спасательный пробковый жилет рамки-окна, на которые были последовательно натянуты черная пластмассовая фольга, толстая гофрированная бумага, водонепроницаемый, но пропускающий пары воды материал, алюминизированная пленка и, наконец, слой ткани. Этот своеобразный конвертер надо периодически опускать в океан, а затем просушивать. В результате за 16 час. в пространстве между алюминизированной пленкой и паронепроницаемой тканью скапливается до полулитра пресной воды (Hackenberg, 1967).
Химики предложили другой путь получения пресной воды из морской. Они использовали природные минеральные вещества – цеолиты, обладающие способностью связывать катионы натрия, калия, кальция, магния – положительно заряженные молекулы растворенных в воде солей, переводя их в нерастворимый осадок. А чтобы избавиться от молекул хлора, к цеолитам добавляли препараты серебра. Достаточно было заполнить морской водой специальный реактивный мешочек, добавить к ней размельченный препарат, чтобы через 10-15 мин. получить добрую порцию пресной воды. Еще большей способностью к ионному обмену обладают искусственные высокомолекулярные соединения – ионообменные смолы.
Сегодня такими опресняющими брикетами снабжены аварийные укладки летчиков и моряков во всем мире. С помощью одного комплекта брикетов можно опреснить до 3,5 л морской или 1,5 л океанской воды (рис. 142).
Рис. 142. Химический опреснитель.
Простота использования и быстрота действия снискали химическим опреснителям всеобщую популярность.
Как же должен себя вести экипаж, оказавшийся на спасательной лодке или плоту в тропической зоне океана?
Не пить первые 24 часа. Экономить пресную воду, помня, что 500-600 мл воды в сутки – рацион, которого хватит на пять-шесть дней без особых последствий для организма. Не пить первые сутки после аварии, создать любую, самую примитивную теневую защиту от солнечных лучей (рис. 143). Смачивать в жаркое время суток одежду забортной водой, помогая организму сохранить внутренние резервы жидкости, но не забывая высушить ее до захода солнца. Ограничить до минимума физическую работу в жаркие дневные часы. Никогда, ни при каких обстоятельствах не пить морскую воду.
Рис. 143. Импровизированный тент из парашюта.