ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА

We use cookies. Read the Privacy and Cookie Policy

ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА

До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.

Ньютон считал, что сила тяготения между двумя объектами, представляемыми в виде точек, пропорциональна массе каждого объекта и обратной величине квадрата расстояния между двумя объектами. Для двух таких точечных объектов с массой m1 и m2 при расстоянии r он выявил следующее уравнение для силы тяжести F между двумя массами.

где G — коэффициент пропорциональности, который он назвал гравитационной постоянной.

Выбор r2 в уравнении Ньютона вместо r или r3 или какой-либо другой степени r был обусловлен его предыдущими открытиями законов движения. Он показал, что тело, которое находится в постоянном круговом движении, всегда испытывает воздействие силы ускорения, направленной к центру круга и равной квадрату скорости, деленному на радиус. Связав это уравнение со своей формулой для силы тяготения, Ньютон доказал третий закон Кеплера для движения планет. Любая другая степень r в его формуле не могла бы доказать третий закон Кеплера. Следующим шагом Ньютона была попытка распространить свои идеи за пределы точечных объектов. Это оказалось очень трудно, и в конце концов после многих лет исследований он доказал, что закон тяготения можно применить к любым двум объектам при условии, что расстояние в его уравнении является расстоянием между двумя центрами тяжести.

См. также статьи «Ньютон», «Законы Кеплера».