Глава 3. Вредные производственные факторы и меры защиты

We use cookies. Read the Privacy and Cookie Policy

3.1. Виды и характеристика вредных производственных факторов

Вредный производственный фактор — производственный фактор, воздействие которого на работника может привести к травме работника.

В соответствии со стандартом безопасности труда опасные и вредные производственные факторы в зависимости от природы возникновения делят на следующие группы:

✓ физические;

✓ химические;

✓ биологические;

✓ психофизиологические.

Физические факторы:

✓ движущиеся машины и механизмы, подвижные элементы машин и оборудования, передвигающиеся изделия, заготовки, материалы;

✓ запыленность и загазованность воздушной среды;

✓ отклонение от нормы параметров микроклимата;

✓ повышенный уровень шума, ультразвука, инфразвука;

✓ повышенный уровень вибрации;

✓ электрический ток и статическое электричество;

✓ электромагнитное излучение, повышенный уровень магнитной и электрической составляющих; ✓ ионизирующее излучение;

✓ недостатки освещения, его пульсация, повышенное инфракрасное и ультрафиолетовое излучение.

Химические факторы:

1) по характеру воздействия на организм человека:

✓ токсические;

✓ раздражающие;

✓ сенсибилизирующие;

✓ канцерогенные;

✓ мутагенные, влияющие на репродуктивную функцию человека;

2) по пути проникновения в организм человека:

✓ через органы дыхания;

✓ через желудочно-кишечный тракт;

✓ через кожные покровы;

✓ через слизистые оболочки.

Биологические факторы — это макро– и микроорганизмы, воздействие которых на работающих вызывает травмы или заболевания.

Психофизиологические факторы:

✓ физические перегрузки (статические, динамические, гиподинамия);

✓ нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов, эмоциональные перегрузки, монотонность труда).

Вредные производственные факторы нельзя рассматривать как постоянное явление, присущее данной профессии. Они могут быть ослаблены или исключены вовсе при усовершенствовании технологического процесса, улучшения условий труда.

Если технологический процесс вынуждает работающего длительно оставаться в одном и том же положении (стоячем, наклонном, сидячем и пр.) или приводит к перенапряжению отдельных систем и органов тела, это также представляет собой вредный фактор производства. Например, длительная работа стоя связана с сильным статическим напряжением, что может привести к деформации костей и суставов, а также сосудистым изменениям (расширению вен нижних конечностей).

К производственным вредностям относятся также неблагоприятные параметры микроклимата производственной среды, водяные пары, образующиеся в процессе варки пищи и мытья посуды, мучная пыль, продукты термического разложения жира, возникающие при жаренье и выпечке кондитерских изделий.

При неправильной эксплуатации тепловых аппаратов, работающих на твердом или газообразном топливе, воздушная среда загрязняется углекислым газом, окисью углерода, сернистым ангидридом. Ядовитые (токсические) вещества нарушают нормальную жизнедеятельность организма, приводят к временным и хроническим изменениям в нем. По физиологическому действию они подразделяются на 5 групп:

раздражающие – поражают слизистую оболочку дыхательных путей (аммиак, хлор, сернистый и серный ангидрид и др.);

удушающие – их действие связано с нарушением процессов газообмена. К этой группе относятся инертные газы (снижающие содержание кислорода в воздухе ниже нормы, необходимой для нормального дыхания тканей), а также химические удушающие вещества (окись углерода, сероводород и др.) которые вызывают не только удушение, но и отравление;

летучие наркотики (и им подобные) – оказывают наркотическое воздействие без серьезных повреждений внутренних органов (ацетилен, предельные углеводороды, эфиры, фреоны и др.);

соматические яды – вызывают поражение внутренних органов, а также кроветворной и нервной систем (мышьяк, сера, олово, метиловый спирт, бензин, нафталин);

токсическая пыль — вызывает фиброзы (кремний, асбест и др.), и нетоксическая — раздражает кожу, глаза, десны, уши.

Предельно допустимой концентрацией называется такая концентрация в воздухе вредных газов, паров, пыли, которая при длительном воздействии не вызывает болезненных изменений в организме человека.

3.2. Гигиенические критерии оценки условий труда

Производственная санитария — это система организационных, гигиенических и санитарно-технических мероприятий и средств, предотвращающих воздействие на работающих вредных производственных факторов.

Используя средства производственной санитарии, на рабочих местах предприятий создают условия труда, способствующие высокой производительности и исключающие влияние вредных производственных факторов на человека.

Производственная санитария включает в себя:

✓ оздоровление воздушной среды и нормализацию параметров микроклимата в рабочей зоне;

✓ защиту работающих от шума, вибрации, электромагнитных излучений и др.;

✓ обеспечение требуемых нормативов естественного и искусственного освещения;

✓ содержание в соответствии с санитарными требованиями территории предприятия, основных производственных и вспомогательных помещений.

Термины «гигиена труда» и «гигиенические нормативы условий труда» приведены в Приложении № 1 Положения о порядке проведения аттестации рабочих мест по условиям труда к постановлению Минтруда РФ от 14 марта 1997 г. № 12.

Гигиена труда – система обеспечения здоровья работающих в процессе трудовой деятельности, включающая правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

Гигиенические нормативы условий труда – уровни вредных производственных факторов, которые при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю в течение всего рабочего стажа, не должны вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. Соблюдение гигиенических нормативов условий труда не исключает нарушение здоровья у сверхчувствительных лиц.

Предметы гигиены труда:

✓ трудовой и производственный процессы, режим и обстановка труда, технологические процессы с точки зрения их влияния на здоровье и организм человека;

✓ неблагоприятные (вредные, опасные) факторы, отрицательно влияющие на человека.

Задачи гигиены труда: разработка санитарно-гигиенических мероприятий по оздоровлению условий труда; обобщение опыта промышленно-санитарного надзора; научное обоснование нормативной документации по охране труда – законов, норм, правил.

Необходимые санитарно-гигиенические условия труда на производственных предприятиях обеспечиваются как на стадии проектирования, так и при эксплуатации оборудования, технологических процессов, производственных и вспомогательных помещений.

3.3. Шум и вибрации

На современного человека постоянно воздействует производственный, транспортный и бытовой шум, уровни которого часто выходят за пределы биологической переносимости.

Борьба с шумом – комплексная проблема, связанная с решением гигиенических, технических, управленческих, правовых и культурно-просветительных задач.

Шум – совокупность звуков, различных по уровню и частоте, которые возникают в результате колебательного процесса. С точки зрения физики звук представляет собой механические колебания упругой среды.

Звуковая волна характеризуется звуковым давлением (Р, Па), интенсивностью (J, Вт/кв. м), частотой (f, Гц), колебательной скоростью (v, м/с).

Звуковое давление показывает разность между мгновенным значением давления и средним давлением в невозмущенной среде.

При распространении звуковой волны в пространстве происходит перенос энергии; количество переносимой энергии определяется интенсивностью звука.

Интенсивность звука — средний поток энергии в какой-либо точке среды в единицу времени, отнесенный к единице площади поверхности, нормальной к направлению распространения волны.

Громкость – субъективные и физиологические свойства звуков, связанные с индивидуальным восприятием их органами слуха человека. Он зависит от частоты звуковых колебаний. С увеличением частоты до 2–3 тыс. Гц громкость звука при постоянной интенсивности возрастает, при дальнейшем увеличении частоты – понижается.

Колебательная скорость — это скорость движения частицы среды около положения равновесия. Она значительно меньше скорости распространения звука (волны), которая зависит от упругих свойств, температуры и плотности среды.

Источник шума характеризуется звуковой мощностью , которая определяется общим количеством звуковой энергии, излучаемой источником в пространство в единицу времени.

Человек воспринимает в виде звука колебания упругой среды с частотой от 20 до 20 000 Гц.

Восприятие человеком звука зависит от его частоты, интенсивности и звукового давления. Наименьшая интенсивность (J0) и наименьшее звуковое давление (Р0), воспринимаемые человеком на данной частоте, называются порогом слышимости .

При f = 1000 Гц Р 0 = 2 × 10 -5 Па и J 0 = 10 -12 Вт/кв. м

Если Р = 20 Па и J = 10 Вт/кв. м, то у человека возникают болевые ощущения – болевой порог.

Между этими порогами лежит область слышимости .

Величина звукового давления и интенсивности звука, с которыми приходится иметь дело при борьбе с шумом, могут меняться в широких пределах: по давлению – до 108 раз, по интенсивности – до 1016 раз. Оперировать такими цифрами неудобно. Поэтому А.Г. Белл (американский изобретатель телефона) предложил использовать для этого логарифмическую шкалу, которая значительно облегчает расчеты.

Кроме того, параметры шума удобно характеризовать относительными величинами, т. е. отношением данного параметра к его порогу слышимости.

Логарифм отношения интенсивности шума к его порогу слышимости называется уровнем интенсивности L шума и измеряется в безразмерных единицах – белах (Б):L = lg (J/J0)

Поскольку интенсивность звука пропорциональна квадрату звукового давления, то для уровня звукового давления можно записать:

L = lg (Р 2 / Р 0 2 ) = 2Ig (Р / Р 0 ).

Человеческое ухо реагирует на величину, в 10 раз меньшую, чем 1 бел, поэтому пользуются децибелом (дБ):

1 дБ = 0,1 Б

Тогда L = 201g (Р / Р 0 )L = 101g (J / J 0 )

Понятием «уровень интенсивности шума» пользуются при акустических расчетах, а понятием «уровень звукового давления» – при измерениях шума и оценке его воздействия на человека, т. е. ухо чувствует среднеквадратичное

давление. Обе эти интенсивности измеряются в децибелах и при нормальных атмосферных условиях равны друг другу [1] .

Зависимость среднеквадратичных значений синусоидальных составляющих шума (или соответствующих им уровней в децибелах) от частоты называется частотным спектром шума .

Спектры получают, используя анализаторы шума, т. е. набор электрических фильтров, пропускающих сигналы в определенной полосе частот. Обычно применяются октавные фильтры. Граничные значения частоты октавных полос и среднегеометрические частоты октавных полос (в скобках) таковы: 22–45 (31,5); 45–90 (63); 90–180 (125); 180–355 (250); 355–710 (500); 710–1400 (1000); 1400–2800 (2000); 2800–5600 (4000); 5600–11 200 (8000).

Спектры используются для сравнения шумовых характеристик, нормирования шума и др.

В нормативных документах шумы принято классифицировать:

по характеру спектра (широкополосные – непрерывный спектр более одной октавы, тоновые – в спектре слышны дискретные тона);

по временным характеристикам (постоянные – за 8 ч изменяется не более чем на 5 дБ; непостоянные – более 5 дБ);

по длительности (непостоянные шумы) (колеблющиеся во времени – уровень звука непрерывно изменяется во времени; прерывистые – уровень звука резко падает до фонового, а повышенный уровень длится более 1 с, импульсные – состоят из одиночных импульсов длительностью менее 1 с интенсивностью не менее 10 дБ).

Орган слуха человека – сложная система. Во внутреннем ухе имеется около 25 000 клеток, реагирующих на звук. Всего человек различает 3–4 тыс. звуков разной частоты.

Даже небольшой шум (50–60 дБ) создает значительную психологическую нагрузку на нервную систему. Эта нагрузка различна в зависимости от возраста, состояния здоровья, вида труда, душевного состояния и др. Воздействие шума зависит также от отношения к нему человека: шум, создаваемый самим человеком, на него практически не влияет, а посторонний шум может сильно раздражать. Под воздействием интенсивного шума (85–90 дБ) в первую очередь снижается слуховая чувствительность к высоким тонам.

Шум оказывает вредное воздействие не только на органы слуха, но и на нервную систему, являясь причиной многих серьезных заболеваний. Шум является причиной преждевременного утомления, ослабления внимания, памяти, мешает нормальному отдыху и восстановлению сил. Он способен вызвать головокружение, что в свою очередь может привести к несчастному случаю.

Под воздействием шума развиваются сердечно-сосудистые заболевания, обостряются язвенные болезни желудка и двенадцатиперстной кишки. Причем шумовые явления обладают аккумуляцией и со временем все сильнее действуют на нервную систему.

Шум оказывает раздражающее влияние на весь организм человека: замедляет психические реакции, вызывает раздражительность, изменяет скорость дыхания и частоту пульса, нарушает обмен веществ.

Воздействие шума на человека принято делить на специфическое (воздействие на органы слуха) и неспецифическое.

Профессиональное заболевание органов слуха (неврит слухового нерва) проявляется в виде тугоухости или полной потери слуха. Вероятность наступления тугоухости определяется величиной эквивалентного уровня звука, продолжительностью его действия и индивидуальной чувствительностью человека.

Шум оказывает вредные воздействия на центральную и вегетативную нервные системы, а через них – и на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма. Наиболее характерной вегетативной реакцией на действие шума является сужение капилляров кожных покровов и слизистых оболочек, наступающее уже при уровне звука 60–70 дБ и приводящее к нарушению периферического кровообращения.

Патологические изменения под влиянием шума рассматриваются как шумовая болезнь, имеющая следующие симптомы: снижение слуховой чувствительности, изменение функции пищеварения (понижение кислотности), сердечно-сосудистую недостаточность, нейроэндокринные расстройства, раздражительность, головные боли, головокружение, снижение памяти, повышенная утомляемость, снижение аппетита, боли в ушах и др.

При уровне шума более 145 дБ возможен разрыв барабанной перепонки.

Определившиеся тенденции и прогнозы развития техники свидетельствуют о том, что качественные изменения машин и агрегатов достигаются главным образом за счет увеличения скоростных и силовых параметров при одновременном снижении их материалоемкости. Это обусловливает возрастание динамических нагрузок, механических воздействий и, следовательно, вибрационной активности выпускаемых машин и производственного оборудования.

Вибрация — механические колебания упругих тел при низких частотах (3–100 Гц) с большими амплитудами (0,5–0,003 мм).

Причины вибрации : неуравновешенные силовые воздействия, возникающие при работе машин и агрегатов с возвратно-поступательным движением деталей, с неуравновешенными вращающимися массами, с механизмами ударного действия.

Основные параметры, характеризующие вибрацию: частота колебаний (f); величина амплитуды смещения точек (А); скорость перемещения точек (виброскорость) (v); ускорение, с которым идет нарастание и убывание виброскорости (виброускорение) (а). При оценке вибрации используют как абсолютные значения частоты (Гц), амплитуды перемещения (мм), среднеквадратичной колебательной скорости за время усреднения (мм/с), так и относительные значения виброскорости и виброускорения в децибелах [2] .

Вибрации могут быть периодическими и непериодическими.

Считается, что человек реагирует на действующее значение параметров вибраций. Действующее значение виброскорости – это среднеквадратичное мгновенных значений скорости.

На практике весь диапазон частот вибраций разбивают на октавные диапазоны. (В октавном диапазоне верхняя граница частоты в 2 раза больше нижней.)

Человек начинает ощущать вибрацию при колебательной скорости 10-4 м/ с, а при 1 м/с возникает болевое ощущение.

Различают общую (сотрясение всего организма) и локальную (обычно руки) вибрацию.

В зависимости от вида вибраций их воздействие на организм человека различно. При частотах общей вибрации менее 0,7 Гц тело человека и его отдельные внутренние органы не испытывают взаимных перемещений. В этом случае возникают симптомы не вибрационной, а морской болезни, происходящей из-за нарушения нормальной деятельности механизма равновесия.

Различные органы тела человека можно представить как колебательные системы некоторой массы, соединенные между собой упругими связями. В такой системе будут возникать резонансные явления, приводящие к ухудшению самочувствия человека. Различные части человека имеют резонанс на частотах 6–9 Гц. Воздействие вибраций на резонансных частотах опасно для человека вследствие возможности разрыва органов тела.

Основа вибрационной болезни – рефлекторные воздействия, оказываемые вибрацией на центральную нервную систему. Симптомы вибрационной болезни: головные боли, головокружения, плохой сон, сердечнососудистые заболевания.

Локальная вибрация вызывает спазмы сосудов, вследствие чего нарушается периферическое кровоснабжение. Одновременно наблюдается воздействие вибрации на нервные окончания, мышечные и костные ткани, возникает побледнение пальцев рук, при более выраженных формах сопровождающееся судорогами в пальцах.

Эффективное лечение вибрационной болезни возможно только на ранних стадиях ее возникновения. При длительном протекании болезни в организме могут наступить необратимые изменения, приводящие к инвалидности.

Основа профилактики вибрационной болезни – применение оборудования и инструментов с параметрами вибрации, не превышающими санитарных норм, а также внедрение прогрессивной технологии, исключающей воздействие производственной вибрации на работающих. При разработке нового, модернизации и ремонте эксплуатируемого оборудования, инструментов, приспособлений, создающих в процессе работы вибрацию, предусматривают меры максимального ее снижения как в источнике образования (конструктивно-проектировочными решениями), так и на пути распространения вибрации (применение средств виброзащиты).

На предприятиях общественного питания вибрация наблюдается при работе холодильных установок, подъемно-транспортного и фасовочного оборудования и других машин, механизмов.

Борьба с шумом и вибрацией проводится последующим направлениям:

✓ совершенствование конструкции машин, механизмов, оборудования;

✓ рациональная планировка помещений с шумными объектами;

✓ использование специальных амортизационных и шумопоглощающих устройств и приспособлений;

✓ применение защитных средств.

3.4. Электромагнитные излучения (ЭМИ)

Электромагнитные поля высоких, ультравысоких и сверхвысоких радиочастот широко применяются в различных сферах хозяйственной деятельности.

К электромагнитным полям промышленной частоты относятся линии электропередач, открытые распределительные устройства.

Использование электромагнитных излучений в электротермических установках дает большие преимущества при применении в прогрессивных технологических процессах, но, систематически воздействуя на организм человека в дозах, превышающих допустимые, является причиной профессиональных заболеваний, вызывающих изменения нервной, сердечнососудистой, эндокринной и других систем организма человека.

Поскольку человек не видит и не чувствует электромагнитные поля, он не всегда может уберечься от их опасного воздействия. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определенной интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаз, мозга, желудка и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия, электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Наряду с биологическим действием электрическое поле приводит к возникновению разрядов между человеком и металлическим предметом. Ток разряда может вызвать судороги.

Основным параметром, характеризующим биологическое действие электромагнитного поля промышленной частоты, является электрическая напряженность. Ее магнитная составляющая не превышает 25 А/м, а вредное действие проявляется при напряженности 150–200 А/м.

Гигиеническое нормирование электромагнитных излучений основано на различных принципах – в зависимости от частоты этих излучений.

Для промышленной частоты (50 Гц) критерием является напряженность электрического поля (ЭП). Нормируется время пребывания человека в зависимости от напряженности электрического поля. В соответствии с ГОСТом 12.1.002-84 «Электрические поля промышленной частоты»:

✓ предельно допустимый уровень напряженности электрического поля (Е) устанавливается равным 25 кВ/м;

✓ пребывание в электрическом поле напряженностью более 25 кВ/м без применения средств защиты не допускается;

✓ пребывание в электрическом поле до 5 кВ/м допускается в течение всего рабочего дня;

✓ пребывание в электрическом поле от 20 до 25 кВ/м допускается не более 10 мин; ✓ пребывание в электрическом поле от 5 до 20 кВ/м допускается в течение

t = 50 / Е – 2 ч;

✓ допустимое время пребывания в электрическом поле может быть реализовано единовременно или дробно в течение рабочего дня. В остальное время напряженность электрического поля не должна превышать 5 кВ/м.

Напряженность постоянных магнитных полей на рабочем месте не должна превышать 8 кА/м.

Предельно допустимый уровень напряженности электростатических полей в соответствии с ГОСТом 12.1.045.84 «ССБТ. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» составляет 60 кВ/м в течение 1 ч.

Предельно допустимая напряженность электростатического поля при другом временном воздействии определяется по формуле:

Е = 60 / t, кВ/м, где

t – время в часах. При напряженности менее 20 кВ/м время пребывания в электростатических полях не регламентируется [3] .

Основные виды средств коллективной защиты от воздействия электрического поля токов промышленной частоты – экранирующие устройства . Экранирование может быть общим и индивидуальным (раздельным).

При общем экранировании высокочастотную установку закрывают металлическим кожухом – колпаком. Установкой управляют через окна в стенках кожуха. В целях безопасности кожух соединяют с заземлением установки. Другой вид общего экранирования – помещение высокочастотной установки в отдельное помещение с дистанционным управлением.

Конструктивно экранирующие устройства могут быть выполнены в виде козырьков, навесов или перегородок из металлических канатов, прутьев, сеток. Переносные экраны могут быть оформлены в виде съемных козырьков, палаток, щитов и др. Экраны изготовляют из листового металла толщиной не менее 0,5 мм.

Наряду со стационарными и переносными экранирующими устройствами для общего использования применяют индивидуальные (раздельные) экранирующие комплекты для защиты от воздействия электрического поля, напряженность которого не превышает 60 кВ/м. В состав индивидуальных экранирующих комплектов входят спецодежда, спецобувь, средства защиты головы, рук и лица. Составные элементы комплектов снабжены контактными выводами, соединение которых позволяет обеспечить единую электрическую сеть и осуществить качественное заземление (чаще через обувь).

Техническое состояние экранирующих комплектов периодически проверяется. Результаты проверки регистрируются в специальном журнале.

3.5. Санитарно-гигиенические условия и физиологические особенности труда

Профессиональную деятельность характеризуют следующие основные факторы: объем и характер нагрузки, в особенности количественное соотношение физической и нервно-эмоциональной нагрузки; положение тела (рабочая поза) во время работы; объем и характер рабочих движений; режим работы – чередование периодов работы и отдыха в течение рабочей смены, недели периодов работы и отдыха.

При организации любого трудового процесса необходимо принимать во внимание психологические и физиологические особенности человека, знать пределы его мышечной силы и скорости движений, быстроты реакции и внимания, скорости переработки информации и ее точности и т. д. При этом нужно учитывать, как эти качества меняются в течение рабочего дня, какие требования можно предъявлять к человеку и какие условия нужно создать для того, чтобы эти требования были выполнены.

Санитарно-гигиенические условия на предприятиях оказывают большое влияние на здоровье человека и трудовые процессы. К санитарно-гигиеническим условиям относят температурный режим, влажность и чистоту воздуха, чистоту помещений, оборудования и инвентаря, личную гигиену работников и т. п.

Нормативную температуру, влажность и чистоту воздуха в помещениях поддерживают с помощью вентиляции и кондиционирования. Вместе с тем действенными мерами по борьбе с загрязненностью воздуха являются влажная уборка помещений, чистота и порядок на рабочих местах и т. п.

Все торговые и производственные помещения должны содержаться в надлежащей чистоте. Следует ежедневно тщательно их убирать: подметать влажным способом и мыть полы, удалять пыль и паутину, протирать окна, двери, панели. По окончании работы помещения нужно тщательно убирать и оставлять на ночь в полном санитарном порядке. Один раз в неделю помещения убирают с применением мыльно-щелочного раствора, хлорной извести. Один раз в месяц назначается санитарный день для проведения генеральной уборки и дезинфекции. Оборудование (прилавки, столы для расфасовки, разделочные доски и т. п.) и инвентарь ежедневно после работы очищают, промывают горячей водой с применением допущенных органами санитарно-эпидемиологической службы моющих средств.

Побелка помещений должна производиться регулярно по мере их загрязнения. Плановый общий ремонт осуществляется по мере необходимости.

Дезинфекция и дезинсекция помещений проводятся систематически по указанию органов санитарно-эпидемиологической службы.

Предприятия должны быть обеспечены достаточным количеством уборочного инвентаря (ведер, тазов, щеток, веников, тряпок и пр.) и моющих средств (мыла, соды, щелока и пр.), которые нужно хранить в специально выделенных для этих целей шкафах в посуде с соответствующими надписями. Не реже одного раза в неделю уборочный инвентарь следует дезинфицировать 10 %-ным раствором хлорной извести.

На состояние здоровья человека влияют не только общие санитарные условия, в которых ему приходится работать, но также и соблюдение правил личной гигиены. Личная гигиена заключается в повседневной заботе о чистоте тела, белья, одежды и обуви, в соблюдении правильного чередования труда, отдыха и сна, занятий физической культурой.

Помещения для личной гигиены женщин предусматриваются на предприятиях общественного питания при числе женщин, работающих в наиболее многочисленной смене, 100 и более и на предприятиях торговли продовольственными товарами при величине торговой площади 650 кв. м и более. Если на предприятиях общественного питания в наиболее многочисленной смене трудится от 50 до 100 женщин, оборудуется индивидуальная кабина для процедур в уборной.

Лица, работа которых связана с продовольственными товарами, проводят медицинский осмотр 1 раз в 3 месяца, обследования на туберкулез – ежегодно, а на бактерионосительство и глистоносительство – в сроки, установленные

местной санитарно-эпидемиологической службой. Каждый работник, подлежащий медицинскому обследованию, обязан иметь личную санитарную книжку установленной формы, в которую заносятся результаты медицинских осмотров.

3.6. Отопление, вентиляция и кондиционирование воздуха

Отопление предусматривает поддержание во всех производственных

зданиях и сооружениях температуры, соответствующей установленным нормам. [4]

В холодный период времени необходимо предусмотреть подачу тепла системами отопления во все помещения с постоянным или длительным (свыше 2 ч) пребыванием людей, а также в помещения, в которых по технологическим условиям нужно поддерживать положительную температуру. Размещение нагревательных приборов должно обеспечивать защиту работающих от ниспадающих потоков холодного воздуха при расположении рабочих мест на расстоянии 2 м и менее от окон в наружных стенах. Источником дополнительного поступления тепла в помещения служат солнечные лучи, система искусственного освещения.

На рабочих местах, где производятся операции, связанные с постоянным соприкосновением с мокрыми и холодными предметами (при разделке мороженого мяса, рыбы), следует оборудовать устройства для обогрева

Отопление устраивается в тех случаях, когда потери тепла превышают тепловыделения в помещении. В зависимости от теплоносителя системы отопления разделяются на водяные, паровые, воздушные и комбинированные.

Системы водяного отопления наиболее приемлемы в санитарно-гигиеническом отношении и подразделяются на системы с нагревом воды до 100 °C и выше 100 °C (перегретая вода).

Вода в систему отопления подается либо от собственной котельной предприятия, либо от районной или городской котельной или ТЭЦ.

Система парового отопления целесообразна на предприятиях, где пар используется для технологического процесса. Нагревательные приборы парового отопления имеют высокую температуру, которая вызывает подгорание пыли. В качестве нагревательных приборов применяют радиаторы, ребристые трубы и регистры из гладких труб.

В производственных помещениях со значительным выделением тепла устанавливают приборы с гладкими поверхностями, допускающими их легкую очистку. Ребристые батареи в таких помещениях не применяют, так как осевшая пыль вследствие нагрева будет пригорать, издавая запах гари. Пыль при высоком нагреве может быть опасна из-за возможности воспламенения. Температура теплоносителя при отоплении местными нагревательными приборами не должна превышать: для горячей воды – 150 °C, водяного пара – 130 °C.

Воздушная система отопления отличается тем, что подаваемый в помещение воздух предварительно нагревается в калориферах (водяных, паровых или электрических).

В зависимости от расположения и устройства системы воздушного отопления бывают центральными и местными.

В центральных системах , которые часто совмещаются с приточными вентиляционными системами, нагретый воздух подается по системе воздуховодов.

Местная система воздушного отопления представляет собой устройство, в котором воздухонагреватель и вентилятор совмещены в одном агрегате, устанавливаемом в отапливаемом помещении.

Теплоноситель может быть получен от системы центрального водяного или парового отопления. Возможно применение электрического автономного нагрева.

В административно-бытовых помещениях часто применяется панельное отопление, которое работает в результате отдачи тепла от строительных конструкций, в которых проложены трубы с циркулирующим в них теплоносителем.

Для организации технологического процесса на предприятиях общественного питания широко используются различные машины и оборудование, которые в процессе эксплуатации выделяют вредные вещества, загрязняющие атмосферу. При распаковке, фасовке, упаковке и других операциях с товарами образуется пыль. Постоянное нахождение значительного количества посетителей на предприятиях общественного питания также требует более интенсивного воздухообмена. Для этой цели используют вентиляцию.

Вентиляция — это комплекс взаимосвязанных процессов, предназначенных для создания организованного воздухообмена, т. е. удаления из производственного помещения загрязненного или перегретого (охлажденного) воздуха и подачи вместо него чистого и охлажденного (нагретого) воздуха, что позволяет создать в рабочей зоне благоприятные условия воздушной среды [5] .

Различают естественную и искусственную вентиляцию.

Естественная вентиляция обеспечивает воздухообмен в помещениях в результате действия ветрового и теплового напоров, образующихся вследствие разной плотности воздуха снаружи и внутри помещений. Ее применяют в помещениях, где не выделяются вредные или неприятно пахнущие вещества. Естественная вентиляция подразделяется на организованную и неорганизованную.

Организованная естественная вентиляция осуществляется аэрацией или дефлекторами. Аэрация предусматривает циркуляцию воздуха через вентиляционные каналы, расположенные в стенах, фонари и специальные воздухопроводы. Возможен также бесканальный обмен воздуха через окна, форточки, фрамуги, откидные поверхности стен и т. п. При дефлекторной вентиляции обмен воздухом происходит через каналы и воздухопроводы, имеющие специальные насадки. Их действие основано на том, что при обтекании насадки ветром на наветренной стороне создается более высокое давление, чем на противоположной, вследствие чего происходит воздухообмен.

Неорганизованная вентиляция осуществляется через неплотности конструкций (окон, дверей, стен). Она вызывается разностью температур воздуха в помещении и снаружи, а также перемещением воздуха при ветре.

Искусственная вентиляция (механическая) достигается за счет работы вентиляторов или эжекторов. Она может быть приточной (нагнетательной), вытяжной (отсасывающей) и приточно-вытяжной.

При приточной вентиляции подача воздуха осуществляется вентиляционным агрегатом, а удаление воздуха – через фонари или дефлекторы. Она применяется, как правило, в помещениях, имеющих избыток тепла и малую концентрацию вредных веществ.

Вытяжная вентиляция предусматривает откачку воздуха из помещений при помощи вентиляционного агрегата. Эта система используется при вентиляции помещений с большой концентрацией вредных веществ, влаги и тепла.

Приточно-вытяжная система вентиляции осуществляется с помощью отдельных вентиляционных систем, которые должны обеспечить одинаковое количество подаваемого и удаляемого из помещений воздуха. В помещениях, в которых постоянно выделяются вредные вещества, вытяжная вентиляция по производительности должна превышать нагнетательную примерно на 20 %. В этих случаях вытяжка воздуха производится из мест скапливания вредных веществ, а подача чистого воздуха – на рабочие места.

По назначению различают общеобменную и местную вентиляцию. Общеобменная вентиляция обеспечивает обмен воздуха для всего помещения, местная – для отдельных рабочих мест. Вентиляция должна быть устроена таким образом, чтобы поток загрязненного воздуха не проходил через зону дыхания людей, находящихся на рабочих местах.

Обеспечение необходимых параметров воздуха в помещении зависит от кратности воздухообмена, мощности вентиляционных систем и выбора их типа.

Кратность воздухообмена (коэффициент вентиляции К) показывает, сколько раз весь воздух помещения заменяется наружным воздухом в течение часа, и определяется по формуле

К = W / V , где

W – объем удаляемого из помещения воздуха, куб. м/ч; V – объем помещения, из которого удаляется воздух, куб. м. Необходимо иметь в виду, что высокая подвижность воздуха вызывает сквозняки, мешающие работе и способствующие возникновению простудных заболеваний. Допустимая скорость движения воздуха в теплый период года 0,3–0,5 м/с, а в холодный – не более 0,3 м/с.

Основные требования к системам вентиляции:

✓ соответствие количества приточного воздуха количеству удаляемого;

✓ приточные и вытяжные системы вентиляции должны быть правильно размещены. Удаление воздуха производится из зоны с наибольшим загрязнением, подача – в зоны с наименьшим загрязнением. Высота расположения воздухоприемных и воздухораспределительных устройств определяется соотношением плотности воздуха в помещении и плотности вещества, его загрязняющего. При тяжелых загрязнениях воздух удаляется из нижней части помещения, при легких – из верхней;

✓ системы вентиляции должны обеспечивать требуемую чистоту воздуха и микроклимат в рабочей зоне, быть электро-, пожаро– и взрывобезопасны, просты по устройству, надежны в эксплуатации и эффективны, а также не должны являться источником шума и вибрации.

Кондиционирование воздуха – это создание и поддержание в закрытых помещениях определенных параметров воздушной среды – температуры, влажности, чистоты, состава, скорости движения и давления воздуха. Параметры воздушной среды должны быть наиболее благоприятными для человека и устойчивыми. Кондиционирование достигается системой технических средств, служащих для перемещения и распределения воздуха и автоматического регулирования его параметров.

Современные автоматические кондиционеры очищают воздух, подогревают или охлаждают, увлажняют или высушивают его в зависимости от времени года и других условий, подвергают ионизации или озонированию, а также подают в помещения с определенной скоростью.

Кондиционирование воздуха обеспечивает в помещении необходимый микроклимат для нормального протекания технологического процесса и создания условий комфорта.

Основными элементами систем кондиционирования являются калориферы, фильтр, холодильные машины, увлажнители, терморегуляторы и другие приборы, регулирующие работу кондиционных установок. Установки для кондиционирования воздуха подразделяют на местные (для отдельных помещений) и центральные (для всех помещений здания) [6] .