Гигантская электрическая машина в небесах[7]
Гигантская электрическая машина в небесах[7]
Грозовые облака способны накапливать потенциал почти в миллиард вольт и создавать искры длиной несколько километров, способны даже при небольших размерах порождать несколько вспышек в минуту, каждая из которых по мощности равна средней электростанции. Кажется невероятным, что эти чудовищные электрические машины состоят лишь из клубящегося множества частиц воды и льда, поддерживаемых восходящим потоком воздуха.
Чтобы объяснить появление объемных зарядов облаков и их пространственное разделение, выдвигали и выдвигают два основных вида гипотез. В одних главная роль отводится осадкам (ее развивали еще М.В. Ломоносов и его помощник Г. Рихман, в 1753 г. погибший во время проведения экспертимента с электрическими разрядами), в других, более сложных – конвективным потокам воздуха. Простейшая гипотеза осадков основана на том, что капли дождя, частицы снежной крупы и градины в грозовом облаке падают сквозь массу более мелких частиц, остающихся во взвешенном состоянии. Предполагалось, что при столкновении падающих частиц со взвешенными первые заряжаются отрицательно, а вторые положительно: таким образом, нижняя часть облака, состоящая из более тяжелых частиц, накапливает отрицательный заряд, а верхняя – положительный. Однако еще Б. Франклин заметил, что попадаются облака с «плюсом» внизу…
Другая гипотеза предполагает, что электрические заряды в облаке образуются в основном благодаря космическим лучам, отрицательно ионизирующим молекулы воздуха в верхней части облака. Но нисходящие потоки воздуха на периферии облака переносят затем отрицательно заряженные частицы из верхнего слоя вниз, а потому и в этом случае у облака формируется та же электрическая структура, которую описывает гипотеза осадков. Для более полного описания процессов в грозовом облаке в модель были введены дополнительные заряженные слои, однако, несмотря на все попытки ее усложнения и доработки, конвективная гипотеза не получила четкого экспериментального подтверждения.
Уже в XIX веке высказывались предположения о том, что объемное разделение зарядов в грозовых облаках может происходить и при соударениях кристаллов льда в виде мелких снежинок или градин с более крупными частицами льда. Эта гипотеза, наименее вероятная на первый взгляд, получила подтверждение в ходе многолетнего эксперимента, проводимого NASA c использованием спутника TRMM (Tropical Rainfall Measurement Mission – «Программа по измерению атмосферных осадков в тропиках»).
Космический мониторинг грозовых облаков дал ценнейшие результаты. За три года спутник получил изображения грозовых облаков и исследовал более 1 миллиона молний. На спутнике TRMM была установлена оптическая камера для регистрации вспышек молний и радар, работавший в микроволновом диапазоне и позволявший измерять количество льда в облаках. При этом аппаратура давала возможность проводить исследования в разных масштабах – глобальном, региональном и локальном.
Как же происходит образование заряда в грозовом облаке? Мельчайшие кристаллы льда устремляются с восходящими потоками воздуха в верхнюю часть облака, развивая скорость до 150 км/ч и многократно соударяясь с другими кристаллами. При этих столкновениях мелкие кристаллы льда теряют электроны и приобретают положительный заряд. В то же время более тяжелые частицы льда приобретают отрицательный заряд и при этом опускаются в нижнюю часть облака. Таким образом, создается разделение зарядов с разностью потенциалов в миллионы вольт, которая и является причиной молний.
Удалось обнаружить однозначную корреляцию (порядка 90 %) между количеством льда в облаках и интенсивностью разрядов молний, причем эта корреляция не зависела от того, где находится облако – над морем, побережьем или сушей. Корреляция была и в глобальном масштабе, и в более мелких масштабах – в отдельной грозовой туче. В последнем случае удалось определить и другую количественную характеристику, связывающую массу льда и частоту возникновения молний – каждые 10 тысяч тонн льда в облаке в среднем приводят к возникновению одного разряда молнии в минуту.
Универсальная природа этой корреляционной связи дает в руки ученым новый инструмент изучения молний и расширяет прогностические возможности разнообразных методик мониторинга атмосферы. Теперь достаточно будет разместить на земле или на любом спутнике недорогие оптические камеры, которые обеспечат учет грозовых разрядов, и с их помощью можно будет (уже без сложных радаров) определять количество льда в облаках и рассчитывать возможности выпадения осадков.
Длительная полемика ученых о том, какой именно механизм приводит к образованию всем знакомых грозовых разрядов, по всей видимости, пришла к своему завершению. Исследования с помощью космических аппаратов показали, что в облаках «работает» ледяной генератор.
КАКОВЫ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОЛНИИ?
Причиной молнии является ударная ионизация. Молния – это пробой конденсатора, у которого диэлектриком является воздух, а обкладками – облака и земля. Емкость такого конденсатора невелика, примерно 0,15 мкФ, но запас энергии огромен, так как напряжение достигает миллиарда вольт.
Скорость распространения молнии тоже огромна. Так, от облаков до Земли молния проходит за 0,002 сек, что соответствует скорости 1000 км/с. Средняя сила тока разряда 1000 А, а общий заряд, переносимый молнией, достигает 100 кулонов. Видимый канал молнии имеет диаметр около 1 метра, а внутренний, по которому течет ток, – 1 сантиметра. Длительность каждого импульса 0,001 сек. Промежутки между импульсами 0,01 сек. Максимальная сила тока в импульсе может превышать 100 000 А. При этом выделяется огромная энергия – до миллиарда Дж. Температура канала достигает 10 000 градусов (почти вдвое выше, чем на поверхности Солнца), что и рождает яркое свечение. После прохождения основного тока наступает пауза длительностью от 10 до 50 сек. За это время канал практически гаснет, его температура падает до 1000 градусов Кельвина. Установлено, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, поэтому после паузы мощный импульс основного тока распространяется по восстановленному каналу снизу вверх. Паузы между свечениями всего десятки миллисекунд, поэтому несколько мощных импульсов мы воспринимаем как единый разряд молнии, как единую яркую вспышку.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
…В НЕБЕСАХ
…В НЕБЕСАХ Перелёт через Атлантику Чарльза Линдберга Маленький фанерный самолётик медленно полз над Атлантическим океаном. Переднее стекло пилотской кабины закрывали баки с бензином; чтобы посмотреть вперёд, пилоту приходилось открывать боковое стекло и выглядывать
САМОЕ КРУПНОЕ ЗЕМНОВОДНОЕ — ГИГАНТСКАЯ САЛАМАНДРА
САМОЕ КРУПНОЕ ЗЕМНОВОДНОЕ — ГИГАНТСКАЯ САЛАМАНДРА Самым крупным земноводным является гигантская, или исполинская, саламандра, обитающая в Японии и Китае. Наибольшая из таких пойманных саламандр весила 65 кг и достигала в длину 1,8 м — настоящее чудовище величиной со
Браки заключаются не на небесах
Браки заключаются не на небесах Большинство людей стремятся найти счастье в браке.Одни — потому что не могут справиться с боязнью одиночества, особенно в период, когда многие сверстники уже женились или вышли замуж, а некоторые успели обзавестись детьми;другие —
ПАРЯЩИЕ В НЕБЕСАХ
ПАРЯЩИЕ В НЕБЕСАХ Мягко оторваться от земли и воспарить в воздух… Многие люди испытали это состояние во сне. А некоторые - и наяву. Феномен левитации - полет в воздухе без каких-либо приспособлений для этого - относится к одной из самых великих тайн, лежащих в области
Асинхронная электрическая машина
Асинхронная электрическая машина Асинхронная электрическая машина – это разновидность электрической машины, скорость вращения ротора которой может изменяться в связи с изменением нагрузок. (В этом, кстати, и состоит ее отличие от синхронных электрических машин.)В 1888 г.
Электрическая машина
Электрическая машина Электрическая машина – это устройство, которое совершает полезную работу за счет преобразования электрической энергии в другой вид энергии, или это машина, которая преобразует механическую энергию в электрическую или обратно, либо электрическую
Вселенная как гигантская голограмма
Вселенная как гигантская голограмма Когда-то великий Лейбниц убежденно заявлял, что Вселенная состоит из элементарных структур – монад, каждая из которых содержит информацию обо всей Вселенной. В своей «Монадологии» Лейбниц пишет:«Каждую частицу материального мира
Гигантская электрическая машина в небесах[7]
Гигантская электрическая машина в небесах[7] Грозовые облака способны накапливать потенциал почти в миллиард вольт и создавать искры длиной несколько километров, способны даже при небольших размерах порождать несколько вспышек в минуту, каждая из которых по мощности
Браки заключаются на небесах
Браки заключаются на небесах Впервые в мировой литературе встречается в романе «Эвфуэс и его Англия» («Euphues and his England», 1580) английского писателя Джона Лили (1553 или 1554-1606)Иносказательно: соединение двух людей в браке предопределено их
Лучше царствовать в преисподней, чем прислуживать в небесах
Лучше царствовать в преисподней, чем прислуживать в небесах Из первой книги «Потерянного рая» английского поэта Джона Мильтона (1608—1674), автора многих политических памфлетов против роялистов-сторонников короля Карла I и в защиту парламентаризма, свободы печати и свободы
На земле, в небесах и на море
На земле, в небесах и на море Из песни «Если завтра война», написанной композиторами братьями Дмитрием и Даниилом Покрассами на стихи поэта-песенника Василия Ивановича Лебедева-Кумача (1898—1949) для одноименного кинофильма (1937): На земле, в небесах и на море Наш напев и
Отечество на небесах
Отечество на небесах Ты здесь [на земле] странник и пришелец; твое Отечество на небесах. Иоанн Златоуст (ок. 344–407), христианский проповедник и богослов Отчизна души есть сам сотворивший ее Бог. Августин (354–430), христианский богослов Не имеем здесь постоянного града, но