3.4.2. Защита, устанавливаемая на магистральной воздушной линии W6

We use cookies. Read the Privacy and Cookie Policy

3.4.2. Защита, устанавливаемая на магистральной воздушной линии W6

В соответствии с рекомендациями ПУЭ для выявления междуфазных замыканий на магистральной линии 10 кВ W6—W8 в начале линии на подстанции № 2 устанавливается ступенчатая токовая защита, выполненная на основе реле типа РТ-40. Первая ступень — селективная токовая отсечка без выдержки времени срабатывания, а вторая — МТЗ.

Для выявления однофазных замыканий на землю, которые могут возникнуть на линиях W6—W8, на подстанции № 2 предусматривается установка устройства контроля изоляции сети 10 кВ. Режимы работы потребителей, присоединенных к шинам 10 кВ этой подстанции, должны допускать отключение питания для поиска поврежденного присоединения при срабатывании устройства контроля изоляции.

Выбирается ток срабатывания (первичный) первой ступени защиты (селективной токовой отсечки).

По условию отстройки от токов КЗ в конце первого участка магистральной линии (W6) в месте присоединения трансформатора Т4:

где kЗ — коэффициент запаса.

По условию отстройки от бросков тока намагничивания всех трансформаторов, присоединенных к линиям W6—W8 [2]:

Значение, полученное по первому условию (1560 А), удовлетворяет требованию отстройки от броска тока намагничивания (не менее 413 А). Поэтому следует принять IC3 = 1560 А.

Оценка протяженности зоны, контролируемой первой ступенью защиты, производится графическим методом. Для этого строится график зависимости токов КЗ от расстояния (от начала линии W6) до места КЗ (рис. 3.7). Наносится прямая, изображающая ток срабатывания первой ступени защиты, селективной токовой отсечки (ТО).

Как видно, зона, контролируемая первой ступенью защиты, реализованной в виде селективной токовой отсечки, составляет примерно 30 % суммарной длины магистральной линии W6—W8. Вторая ступень защиты может быть выполнена в виде неселективной токовой отсечки (НО), которая должна быть согласована по времени срабатывания с предохранителем F1, установленным на присоединении в конце линии W6. Учитывая удаленность этой линии от источника питания и сравнительно небольшие значения токов КЗ при повреждениях, можно считать первую ступень защиты достаточно эффективной. В этих условиях можно проверить возможность выполнить защиту в целом двухступенчатой (первая ступень — ТО; вторая ступень — МТЗ).

Выбираются уставки следующей ступени защиты — МТЗ. По току она отстраивается от максимального рабочего тока в контролируемой линии:

Здесь k3 — коэффициент запаса (k3 = 1,2); kв — коэффициент возврата (kв = 0,85); kСЗ — коэффициент самозапуска для нагрузок линии W6 (в исходных данных нет сведений о процессах самозапуска в нагрузках линии W6, поэтому, не исключая полностью возможности самозапуска электродвигателей в этих нагрузках, можно принять kСЗ = 1,2).

Выдержка времени срабатывания ступени МТЗ определяется по условию согласования с предохранителями. Для этого необходимо использовать графический метод, так как времятоковые характеристики предохранителей приводятся в справочниках только в виде графиков. По справочным данным (см. прил. 2) строятся расчетные характеристики предохранителей (смещенные по оси токов вправо на 20 %), выбранных для трансформаторов Т4—Т6 (рис. 3.8). Границы характеристик предохранителей соответствуют значениям максимальных токов в расчетных точках К9 и К11. Характеристика предохранителя F1 показана до значения тока 1300 А, а F2 и F3 — до 890 А.

Как видно, при предварительно выбранном токе срабатывания МТЗ (140 А) время срабатывания защиты должно быть чрезмерно большим, чтобы обеспечивалась селективность действия защиты и предохранителей. Для их согласования при приемлемых выдержках времени срабатывания необходимо увеличить ток срабатывания ступени МТЗ. Даже при максимальном токе срабатывания по условиям чувствительности в режиме основного действия (370 А) ее выдержка времени срабатывания должна быть не менее 5,5 с (см. рис. 3.8). Иногда это недопустимо по условиям термической устойчивости оборудования.

В этих условиях защиту, устанавливаемую на линии W6, целесообразно выполнить трехступенчатой; ПУЭ это не запрещают. Первая ступень — селективная токовая отсечка (ток срабатывания определен); вторая — неселективная токовая отсечка с выдержкой времени срабатывания; третья — МТЗ.

Выбираются уставки второй ступени защиты.

Ток срабатывания второй ступени защиты определяется по условию ограничения контролируемой зоны в пределах магистральной линии W6—W8:

Здесь I(3)К МАХ W6 K13 — максимальный ток КЗ в конце контролируемой зоны (в конце участка W8).

При этом токе (804 А) расчетное время срабатывания предохранителя трансформатора Т4 составляет 0,5 с (см. рис. 3.8). Поэтому с целью обеспечения селективной работы второй ступени защиты и предохранителей можно выбрать время срабатывания второй ступени tC3 W6-2 = 1 с (ступень селективности 0,5 с).

С учетом ограничений по чувствительности защиты в режиме основного действия можно выбрать ток срабатывания третьей ступени защиты (МТЗ) tC3 W6-3 = 370 А, а время срабатывания — tC3 W6-3 = 5 5 с

Выбираются ТТ для линии W6. Целесообразно выбрать ТТ с номинальным первичным током, превышающим максимальный рабочий ток в линии (82,6 А) в 2–3 раза. Пусть будут выбраны ТТ типа ТПЛ-10 класса Р с коэффициентом трансформации 200/5 и общая схема соединения вторичных обмоток ТТ и катушек реле «неполная звезда — неполная звезда».

Выбираются реле и определяются параметры их срабатывания.

Ток срабатывания реле тока первой ступени:

Выбирается реле РТ-40/50, в диапазон уставок которого входит расчетное значение тока срабатывания 39 А при параллельном соединении катушек реле.

Ток срабатывания реле тока второй ступени:

Выбирается реле РТ-40/50, в диапазон уставок которого входит расчетное значение тока срабатывания 20,1 А при последовательном соединении катушек реле.

Ток срабатывания реле тока третьей ступени:

Выбирается реле РТ-40/20, в диапазон уставок которого входит расчетное значение тока срабатывания 9,3 А при последовательном соединении катушек реле.

Оценивается чувствительность защиты. Для первой и второй ступеней показателем чувствительности является протяженность контролируемой зоны. Протяженности этих зон определяются графическим методом и составляют 30 и 50 % длины магистральной линии соответственно. Значения показателей дают основание считать первую и вторую ступени защиты достаточно чувствительными.

Коэффициент чувствительности третьей ступени защиты в режиме основного действия:

Как видно, коэффициент чувствительности в режиме основного действия имеет приемлемое значение, а в режиме резервного действия меньше 1. Это означает, что защита, установленная в начале магистральной линии, не может выполнять функции резервной защиты трансформаторов Т4—Т6.

В этих условиях для резервирования основных защит трансформаторов Т4—Т6 (предохранителей) необходимо применение специальной резервной защиты или изменение параметров электрической сети. Однако реально допускается эксплуатация подобных электрических сетей без резервирования защит.

Схема вторичных и оперативных цепей защиты показана на рис. 3.9.

Выбираются вспомогательные реле (их основные параметры приведены в прил. 6, а более полная информация содержится в справочнике [13]).

Реле времени для второй и третьей ступеней защиты — ЭВ-132 с диапазоном выдержек времени от 0,5 до 9 секунд и номинальным напряжением питания 220 В.

Промежуточные реле — РП-221 с номинальным напряжением питания 220 В.

Указательные реле — РУ-21/0,01.

Производится проверка ТТ. Для этого определяется максимальная кратность расчетного первичного тока по отношению к номинальному первичному току ТТ:

k10 = I1 РАСЧ / I1 НОМ ТТ = 1,1? IСЗ W6-1 / I1 НОМ ТТ = 1,1? 1560 / 200 = 8,5

Здесь I1 РАСЧ = 1,1? IСЗ W6-1 и I1 НОМ ТТ — значение расчетного тока при реализации защиты на реле серии РТ-40 на постоянном оперативном токе и номинальный первичный ток ТТ.

По кривой предельных кратностей k10 определяется максимальная допустимая вторичная нагрузка ТТ (полное сопротивление), при которой полная погрешность ТТ не превышает 10 %. Для ТТ ТПЛ-10 200/5 максимальное допустимое сопротивление нагрузки — 1,2 Ом (см. прил. 7).

Расчетное наибольшее сопротивление нагрузки ТТ:

ZH РАСЧ = 2 ? rПР + 2 ? ZPT-40/50 + ZPT-40/20+ rПЕР.

Здесь ZРТ-40 = SР /I2CР MIN  — сопротивление реле РТ-40 при минимальной уставке; SP и ICР MIN — расчетная мощность реле и минимальный ток срабатывания реле (для реле РТ-40/50 SP = 0,8 ВА, ICР MIN  = 12,5 А; для реле РТ-40/20 SP = 0,5 ВА, ICР MIN = 5 А); rПР — активное сопротивление проводников в сигнальном кабеле (можно принять rПР = 0,05 Ом); rПЕР — активное сопротивление переходных контактов (можно принять rПЕР = 0,1 Ом).

Значение расчетного наибольшего сопротивления:

ZH РАСЧ = 2 ? 0,05 + 2 ? 0,8 /(12,5)2 + 0,5 /(5)2 + 0,1 = 0,23 Ом.

Это значение (0,23 Ом) меньше допустимого (1,2 Ом). Следовательно, режим работы ТТ в защите, установленной на линии W6, соответствует требованиям, при выполнении которых полная погрешность ТТ не превысит 10 %.

Таким образом, решения, принятые при выборе схемы защиты, ТТ и реле, можно считать приемлемыми.

Данный текст является ознакомительным фрагментом.