4. Виды эконометрических моделей

We use cookies. Read the Privacy and Cookie Policy

4. Виды эконометрических моделей

Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:

1) модель временных рядов;

2) модели регрессии с одним уравнением;

3) системы одновременных уравнений.

Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.

К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:

а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;

б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;

в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.

К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:

а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;

б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;

в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.

Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.

Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.

Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.

Определение. Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии:

y=f(x,?)=f(х1,х2,…,хn, ?1…?k)

где ?1…?k – параметры модели регрессии.

Можно выделить две основных классификации моделей регрессии::

а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;

б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,?).

В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:

а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);

б) функция цены Р=f(Q,Pk), характеризующая зависимость цены определённого товара (Р) от объема поставки (Q) и от цен конкурирующих товаров (Pk);

в) функция спроса Qd=f(P,Pk,I), характеризующая зависимость величины спроса на определённый товар (Р) от цены данного товара (Р), от цен товаров-конкурентов (Pk) и от реальных доходов потребителей (I).

Системой одновременных уравнений называется модель, которая описывается системами взаимозависимых регрессионных уравнений.

Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.

Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.

Основное отличие тождеств от регрессионных уравнений заключается в том, что их вид и значения параметров известны заранее.

Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:

а) уравнение предложения:  =а0+а1*Рt+a2*Pt-1;

б) уравнение спроса:  =b0+b1* Рt+b2*It;

в) тождество равновесия: QSt = Qdt,

где QSt – предложение товара в момент времени t;

Qdt – спрос на товар в момент времени t;

Рt – цена товара в момент времени t;

Pt-1 – цена товара в предшествующий момент времени (t-1);

It– доход потребителей в момент времени.

В модели спроса и предложения выражаются две результативные переменные:

а) Qt– объём спроса, равный объёму предложения в момент времени t;

б) Pt– цена товара в момент времени t.

Данный текст является ознакомительным фрагментом.