36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
Общий вид модели Оукена:
Yt=a0+ a1* wt+ ut
E (ut/wt) = 0t
Var (ut/wt) = бu2
t=1,2,...
где wt – темп прироста безработицы в году t;
Yt – темп роста валового внутреннего продукта (ВВП);
a0,a1 – параметры модели, подлежащие оценке.
При проверке качества спецификации данной эконометрической модели, задача состоит в оценке объясняющей способности независимой переменной или регрессора wt.
При проверке качества спецификации эконометрической модели перед нами стоит задача выяснить, какова же объясняющая способность регрессора wt.
Предположим, что неизвестные параметры модели Оукена были найдены с помощью метода наименьших квадратов. Необходимо проверить адекватность оценённой эконометрической модели. Для этого на основе выборочных данных рассчитывается коэффициент детерминации R2. Если коэффициент детерминации равен единице (R2=1), то можно сделать вывод, что поведение зависимой переменной Yt полностью объясняются поведением независимой переменной wt. Если коэффициент детерминации равен нулю (R2=0), то поведение независимой переменной wt не влияет на поведение зависимой переменной Yt в рамках построенной модели. Однако такой вывод должен быть доказан с помощью F-теста.
Основная гипотеза состоит в предположении о незначимости параметра a1 модели Оукена:
Н0: a1=0.
Обратная или конкурирующая гипотеза состоит в утверждении о значимости параметра a1 модели Оукена:
Н0: a1?0.
Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.
Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.
При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=1 и k2=n–(l+1) – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.
При проверке основной гипотезы вида Н0: a1=0 наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:
F=(R2/l)/((1-R2)*(n-(l+1))).
Для рассматриваемой модели Оукена величина F-статистики равна:
F=R2/((1-R2)*(n-2)).
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл>Fкрит, то основная гипотеза о незначимости коэффициента a1 модели Оукена отвергается, и он признаётся значимым. В этом случае делается вывод о том, что независимая переменная в оценённой модели обладает способностью объяснять эндогенные значения Yt и модель считается качественной.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл?Fкрит, то основная гипотеза о незначимости коэффициента a1 модели Оукена принимается, и он признаётся незначимым. В этом случае делается вывод об отсутствии объясняющей способности рассматриваемой независимой переменной.
Процедура проверки адекватности модели Оукена на основании результатов интервального прогнозирования.
Интервальное прогнозирование подразумевает следующую процедуру объективного (формального) контроля адекватности модели:
1) все результаты наблюдения делятся на две выборки:
а) обучающая выборка, содержащая 90-95 % объема проведённых наблюдений, т. е. это выборка, на основании данных которой осуществляется оценка неизвестных параметров модели;
б) контрольная выборка, состоящая из оставшегося количества наблюдений;
2) модель оценивается (при условии адекватности всех предпосылок теоремы Гаусса-Маркова) с помощью метода наименьших квадратов;
3) задается доверительная вероятность (бета) из диапазона [0,95;0,999]. По значениям объясняющих переменных из контрольной выборки вычисляют точечные прогнозы ?0=?0+?1*w0 и строят доверительный интервал [y0+;y0-] для эндогенных переменных из контрольной выборки.
В том случае, если значения эндогенной переменной из контрольной выборки накрывается доверительными интервалами, то построенная модель считается адекватной. На её основе можно строить рабочие прогнозы и использовать для изучения объекта. Если же значения эндогенной переменной из контрольной выборки не накрывается доверительными интервалами, то модель не считается адекватной и подлежит доработке.
Процедура проверки адекватности модели Оукена на основании результатов точечного прогнозирования.
Предположим, что модель Оукена вида yt= a0+a1*wt+ut была оценена с помощью метода наименьших квадратов на основании данных из обучающей выборки. Для проверки адекватности модели была подготовлена контрольная выборка (y0;w0), где величины y0 и w0 были получены в процессе наблюдения исследуемых переменных. Прогноз зависимой переменной получается в результате подстановки в оценку модели регрессии значения w=w0 независимой переменной:
?0=~a0+~a1*x0(1)
Среднеквадратичная ошибка прогноза (1) определяется по формуле:
Sy0=~бu*(1+q0)1/2,
где q0=w0T*Q*w0;
w0T=(1,w0) – вектор известного значения независимой переменной;
Q=(WT*W)-1.
Величина q0 учитывает в структуре среднеквадратической ошибки Sy0 погрешности (ошибки оценивания) величины ~a0. Если величина полученного прогноза (1) удовлетворяет с учетом среднеквадратической ошибки прогноза истинному значению, то модель признается адекватной, если нет – то модель подлежит доработке.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
МОДЕЛИ
МОДЕЛИ По меньшей мере один из известных серийных убийц — Харви Мюррей Глэтмен, фотографировавший перепуганных жертв, прежде чем убить их, — «специализировался» на фотомоделях (см. статью «Фотографы-убийцы»). Но в данном случае речь идет не о живых моделях, а о
МОДЕЛИ ВСЕЛЕННОЙ
МОДЕЛИ ВСЕЛЕННОЙ В 1929 году Элвин Хаббл обнаружил, что, чем дальше находится галактика, тем быстрее она отдаляется от нас. Этот феномен объясняется теорией о расширении Вселенной. За два века до открытия Хаббла Исаак Ньютон осознал, что если Вселенная конечна, то звезды не
Модели Кристи
Модели Кристи Свою первую, сделанную на скорую руку колесно-гусеничную машину М.1919 (рис. 95 ) Кристи, чья фирма теперь носила название «U. S. Wheeled Caterpillar Manufacturing C°», представил на Абердинском полигоне в США в ноябре 1911 года. Данная модель отличалась следующими техническими
Модели
Модели По меньшей мере один из известных серийных убийц – Харви Мюррей Глэтмен, фотографировавший перепуганных жертв, прежде чем убить их, – «специализировался» на фотомоделях (см. статью «Фотографы-убийцы»). Но в данном случае речь идет не о живых моделях, а о
7. Сбор статистических данных для оценивания параметров эконометрической модели
7. Сбор статистических данных для оценивания параметров эконометрической модели Первым этапом при проведении эконометрического исследования является сбор статистических данных об анализируемом объекте или процессе в виде конкретных значений эндогенных переменных и
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая
30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными Частные коэффициенты корреляции используются для оценки зависимости между результативной переменной и одной из факторных переменных при условии постоянства всех
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все