30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
Частные коэффициенты корреляции используются для оценки зависимости между результативной переменной и одной из факторных переменных при условии постоянства всех остальных факторных переменных, включённых в модель множественной регрессии. Таким образом, частный коэффициент корреляции позволяет элиминировать влияние на результат всех факторных модельных переменных кроме одной.
Рассчитаем частные коэффициенты корреляции на основе линейной модели регрессии с двумя факторными переменными.
Общий вид модели двухфакторной регрессии:
yi=?0+?1xi+?2zi+?i,
где yi – результативная переменная,
xi – первая факторная переменная;
zi – второй факторная переменная;
?0, ?1, ?2– неизвестные коэффициенты модели регрессии;
?i – случайная ошибка модели регрессии.
Для определения степени зависимости между результативной переменной yiи факторной переменной xi при постоянном значении факторной переменой zi и результативной переменной yi и факторной переменной zi при постоянном значении факторной переменной xi используются частные коэффициенты корреляции первого порядка, потому что они позволяют элиминировать влияние только одного признака. Порядок частного коэффициента корреляции характеризуется количеством признаков, влияние которых устраняется. Для модели парной регрессии рассчитывается коэффициент корреляции нулевого порядка.
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xiпри постоянном значении факторной переменой ziрассчитывается по формуле:
Коэффициент частной корреляции между результативной переменной yi и факторной переменной ziпри постоянном значении факторной переменной xi рассчитывается по формуле:
Кроме влияния на результативную переменную, частный коэффициент корреляции позволяет рассчитать степень зависимости между факторными переменными.
Коэффициент частной корреляции между факторной переменной xi и факторной переменной ziпри постоянном значении результативной переменной yi рассчитывается по формуле:
Рассмотренные коэффициенты частной корреляции изменяются в пределах от минус единицы до единицы.
Частные коэффициенты корреляции также можно рассчитать через коэффициент множественной детерминации.
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi:
где
– множественный коэффициент детерминации двухфакторной модели регрессии.
Данный коэффициент корреляции изменяется в пределах от нуля до единицы.
При проверке значимости частных коэффициентов корреляции выдвигается основная гипотеза о незначимости данных коэффициентов, например:
Н0:ryx/z=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1:ryx/z?0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента. Критическое значение t-критерия tкрит(а,n-h) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-h) – число степеней свободы. Для модели двухфакторной регрессии число степеней свободы равно (n-3).
Наблюдаемое значение t-критерия рассчитывается по формуле (на примере частного коэффициента корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi):
Если |tнабл|?tкрит, то основная гипотеза не отклоняется, и частный коэффициент корреляции является незначимым. Следовательно, между переменными х и у при постоянном значении переменой z корреляционная связь отсутствует.
Если |tнабл|>tкрит, то основная гипотеза отклоняется в пользу конкурирующей гипотезы с вероятностью совершения ошибки первого рода а. В этом случае можно считать, что между переменными х и у при постоянном значении переменной z существует корреляционная зависимость.
Частные коэффициенты корреляции позволяют сделать вывод об обоснованности включения переменной в модель регрессии. Если значение частного коэффициента корреляции мало или коэффициент незначим, то связь между данной факторной переменной и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели без ущерба для её качества.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии
18. Характеристика качества модели регрессии
18. Характеристика качества модели регрессии Качеством модели регрессии называется адекватность построенной модели исходным (наблюдаемым) данным.Для оценки качества модели регрессии используются специальные показатели.Качество линейной модели парной регрессии
25. Точечный и интервальный прогнозы для модели парной регрессии
25. Точечный и интервальный прогнозы для модели парной регрессии Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.Основная гипотеза состоит в предположении о незначимости
36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена
36. Процедура проверки адекватности оцененной линейной эконометрической модели на примере модели Оукена Общий вид модели Оукена:Yt=a0+ a1* wt+ utE (ut/wt) = 0tVar (ut/wt) = бu2t=1,2,...где wt – темп прироста безработицы в году t;Yt – темп роста валового внутреннего продукта (ВВП);a0,a1 – параметры
39. Модели регрессии, нелинейные по факторным переменным
39. Модели регрессии, нелинейные по факторным переменным При исследовании социально-экономических явлений и процессов далеко не все зависимости можно описать с помощью линейной связи. Поэтому в эконометрическом моделировании широко используется класс нелинейных
40. Модели регрессии, нелинейные по оцениваемым коэффициентам
40. Модели регрессии, нелинейные по оцениваемым коэффициентам Нелинейными по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели ?0…?n.К моделям регрессии, нелинейными по
41. Модели регрессии с точками разрыва
41. Модели регрессии с точками разрыва Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.Модели регрессии делятся на два класса:1) кусочно-линейные модели регрессии;2)
45. Показатели корреляции и детерминации для нелинейных моделей регрессии
45. Показатели корреляции и детерминации для нелинейных моделей регрессии Индексом корреляции для нелинейных форм связи называется коэффициент корреляции, который вычисляется для оценки качества построенной нелинейной модели регрессии.Индекс корреляции для
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
57. Гетероскедастичность остатков модели регрессии
57. Гетероскедастичность остатков модели регрессии Случайной ошибкой называется отклонение в линейной модели множественной регрессии:?i=yi–?0–?1x1i–…–?mxmiВ связи с тем, что величина случайной ошибки модели регрессии является неизвестной величиной, рассчитывается
60. Устранение гетероскедастичности остатков модели регрессии
60. Устранение гетероскедастичности остатков модели регрессии Существует множество методов устранения гетероскедастичности остатков модели регрессии. Рассмотрим некоторые из них.Наиболее простым методом устранения гетероскедастичности остатков модели регрессии
63. Устранение автокорреляции остатков модели регрессии
63. Устранение автокорреляции остатков модели регрессии В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков