79. Методы фильтрации временного ряда
79. Методы фильтрации временного ряда
Методы фильтрации временных рядов предназначены на решение проблем, возникающих при исследовании взаимосвязи между двумя и более временными рядами, с помощью исключения из них трендовой и сезонной компонент.
К проблемам, которые позволяют устранить методы фильтрации временных рядов, относятся:
1) проблема ошибочности показателей тесноты и силы связи:
а) если временные ряды, между которыми изучается взаимосвязь, содержат циклическую или сезонную компоненту одинаковой периодичности, то в результате значение показателей тесноты связи будет завышено;
б) если один из временных рядов содержит циклическую или трендовую компоненту или периодичность совместных колебаний различна, то в результате значение показателей тесноты связи будет занижено;
2) проблема «ложной корреляции»:
а) если временные ряды, между которыми изучается взаимосвязь, содержат тренды одинаковой направленности, то уровни этих рядов будут положительно коррелированны;
б) если временные ряды, между которыми изучается взаимосвязь, содержат тренды противоположной направленности, то уровни этих рядов будут отрицательно коррелированны.
Первая проблема решается путём исключения из временного ряда сезонной компоненты.
Если временной ряд представлен в виде аддитивной модели, то сезонная компонента устраняется путём вычитания из исходных уровней ряда показателей абсолютных отклонений Sai.
Если временной ряд представлен в виде мультипликативной модели, то сезонная компонента устраняется путём деления исходных уровней ряда на индексы сезонности Isi.
Проблема “ложной корреляции” решается путём исключения из временного ряда трендовой компоненты.
Предположим, что исследуется зависимость между двумя временными рядами – Х и Y. При этом была построена модель регрессии вида:
Yt=?0+?1*Хt+?t.
Для выявления «ложной корреляции» необходимо провести анализ остатков данной модели регрессии, потому что если в модели присутствует обычная автокорреляция остатков, следовательно, существует и «ложная автокорреляция».
Исключение трендовой компоненты осуществляется с помощью метода отклонений от тренда.
Алгоритм реализации метода отклонений от тренда:
1) вычисляются отклонения уровней временных рядов Yt и Xt от их значений, рассчитанных на основе уравнений тренда:
2) определяется степень тесноты связи между полученными отклонениями с помощью коэффициента корреляции:
3) для линейной модели регрессии строится модель зависимости отклонения e(yt) от e(xt):
e(yt)=a0+a1* e(xt).
Неизвестные коэффициенты данной модели рассчитываются с помощью классического метода наименьших квадратов по формулам:
В результате получим модель вида:
e(yt)=a1* e(xt).
Исключение трендовой компоненты можно также осуществить с помощью метода последовательных разностей. При этом рассчитываются разности между текущим и предыдущим уровнями для каждого временного ряда:
Далее рассчитывается показатель линейной корреляции абсолютных цепных приростов по формуле:
На основании показателей абсолютных цепных приростов можно построить линейную модель регрессии вида:
где а1 – это коэффициент, который уравнении характеризует в среднем прирост Y при изменении прироста Х на единицу своего измерения;
а0 – это коэффициент, который характеризует прирост Y при нулевом приросте Х.
С помощью разностных операторов первого порядка можно исключить автокорреляцию только в тех временных рядах, в которых основная тенденция выражена прямой линией.
С помощью разностных операторов второго порядка можно исключить автокорреляцию в тех временных рядах, в которых основная тенденция выражена параболой второго порядка.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
3. Движение с перестроением из ряда в ряд
3. Движение с перестроением из ряда в ряд Данный маневр требует от водителя повышенного внимания. При этом должны быть выполнены два условия. Надо:* Уступить дорогу транспортному средству, движущемуся в своем ряду. * Подать предупредительный сигнал. Рассмотрим несколько
Строительство временного жилища
Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после
Строительство временного жилища
Строительство временного жилища Сооружение временного жилища, защита от высоких и низких температур, солнечной радиации, ветра и т. д. – первоочередная задача, которую необходимо решать немедленно, как только минует непосредственная угроза для жизни людей после
Изоляторы временного содержания
Изоляторы временного содержания ИЗОЛЯТОРЫ ВРЕМЕННОГО СОДЕРЖАНИЯ — места, предназначенные для содержания под стражей задержанных по подозрению в совершении преступлений. В И.в.с. в случаях, предусмотренных законодательством, могут временно содержаться подозреваемые и
Склады временного хранения
Склады временного хранения см. Временное хранение.
1.3. Вода и средства фильтрации воды
1.3. Вода и средства фильтрации воды Запас воды должен быть в зависимости от климата и местности. Берите 2–6 литров воды на сутки, например, в бутылках с закручивающейся пробкой (они в дальнейшем пригодятся): зимой меньше, летом больше. Учитывайте, что для приготовления еды
70. Компоненты временного ряда
70. Компоненты временного ряда Временным рядом называется ряд наблюдаемых значений изучаемого показателя, расположенных в хронологическом порядке или в порядке возрастания времени.Отдельно взятый временной ряд можно представить как выборочную совокупность из
76. Сезонные и циклические компоненты временного ряда
76. Сезонные и циклические компоненты временного ряда Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:1) метод
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды
82. Линейные модели стационарного временного ряда
82. Линейные модели стационарного временного ряда Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.К основным линейным моделям стационарных временных
Пребывание в изоляторе временного содержания (ИВС)
Пребывание в изоляторе временного содержания (ИВС) Переступив порог камеры, помните: вы теперь один, и рассчитывать теперь вам придется только на себя, поэтому мобилизуйтесь. Не удивляйтесь и не паникуйте, что в течение нескольких ближайших дней вас не вызывают