Вектор

Вектор

Вектор. – Те физические количества, которым приписывают не только величины, но и направления, называют векториальными величинами; таковы, например, силы, скорости, ускорения, количества движений, моменты сил и количеств движений вокруг точек и проч. Эти количества изображают длинами, заключающими в себе столько единиц длины и частей ее, сколько в рассматриваемой векториальной величине заключается единиц величины и частей ее; длину эту проводят в направлении, свойственном изображаемой векториальной величине. В механике и математической физике почти в каждом вопросе приходится рассматривать векториальные количества и производить над. ними различные действия аналитического и геометрического характера, причем оказывается, что векториальные количества различных наименований обладают многими аналогичными свойствами. Так, например, при известных условиях, силы, количества движения, скорости, ускорения, угловые скорости и моменты слагаются по правилу параллелограмма. Далее, теория моментов системы сил, приложенных к твердому телу, оказывается аналогичною теории скоростей точек твердого тела. По этой причине признано полезным и возможным составить общую теорию векторов, подразумевая под вектором длину, проведенную из какой-либо точки в каком либо направлении. Каждый вектор определяется тремя величинами: длиною и двумя углами, определяющими направление вектора, или же тремя проекциями вектора на оси координат. Теорию векторов, то есть изложение различных действий над векторами, можно теперь найти в различных новейших курсах механики. В самом стройном виде теория векторов является в учении о кватернионах, основанном У. Гамильтоном.

Главным вектором совокупности сил, приложенных к системе материальных точек или к разным точкам твердого тела, называется геометрическая сумма всех этих сил, или, иначе говоря, равнодействующая, которую имели бы все эти силы, если бы они были приложены к одной и той же точке.

Радиусом-вектором какой либо точки относительно какого либо центра называется длина, проведенная из центра к точке.

Д. Бобылев.