Асимптота

Асимптота

Асимптота (от греч. слов: a, sun, piptw) – несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между общими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к её оси. Эти прямые, о которых упоминает уже Архимед, были еще в древности названы А. и сохранили свое название и по настоящее время. Впоследствии Ньютон показал, что существуют криволинейные А. не только в кривых трансцендентных, но даже в алгебраических, начиная с 3 порядка последних. Действительно, ныне различают А. прямолинейные и криволинейные; но, обыкновенно, прямолинейной А. присваивают название Асимп., называя криволинейную – асимптотической кривой. Основываясь на вышеприведенном определении, что прямолинейная А. есть касательная к кривой в точке, бесконечно удаленной от начала координат, легко найти уравнение А. данной кривой. В самом деле, пусть y=f(x) есть уравнение кривой линии; уравнение касательной ее в точке, определенной координатами х и у, будет, как известно, или .

Чтобы перейти от касательной к А., стоит сделать одно из следующих предположений: 1) х и у =+? , 2) x=+?, а у=конечному числу и 3) у= +?, а х=конечному числу, так как этими предположениями мы выражаем, что точка касания находится на бесконечном расстоянии от начала координат. Так, для гиперболы, определяемой уравнением , находим Полагая х =?, найдем ; следовательно уравнение А. рассматриваемой гиперболы будет или, что все равно, ; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет Y А. =Х+В уравнение А., непараллельной оси у. Ордината у кривой, соответствующая абсциссе х, для весьма больших величин сей абсциссы, будет очень мало разниться от ординаты Y а-ты; так что можно ее принять у=Ах+В+e , подразумевая под e количество, уничтожающееся вместе с I/x. Итак, полагая х=? , найдем , и пред. (у – Ах)= пред. (В+e)=В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить или y=xq и найти предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у – Ах = n, или y = Ax + n. Изменив х на у и наоборот, и рассуждая также, как и выше, найдем А., непараллельные оси х. Так, например, уравнение рассмотренной нами гиперболы, через подстановку qx вместо у, дает или полагая х =?, найдём , или Полагая в том же уравнении получим или , где, полагая х=?, получим n=0=B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, , что и требовалось доказать. бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др.

Пример асимптотической кривой усматриваем в кривой 3-го порядка, определяемой уравнением y=х2 + I/х. Очевидно, что по мере увеличения абсциссы х в положительную или отрицательную сторону, член I/x будет неопределенно уменьшаться, а х2 увеличиваться, так что ордината у будет приближаться все более и более к значению х2, которого однако никогда не достигает. Отсюда ясно, что рассматриваемая нами кривая имеет А-ской кривой параболу, определяемую уравнением у=х2 Для весьма малых положительных или отрицательных значений абсциссы х случится обратное положение: численная величина дроби I/x неопределённо возрастает, а х2 напротив того, уменьшается, так что ордината у будет стремиться к равенству с I/x ; таким образом, равностороння гипербола, отнесенная в своим асимптотам, будет также А-ою предложенной кривой.