71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
71. Метод проверки гипотезы о существовании тренда во временном ряду, основанный на сравнении средних уровней ряда
Наличие во временном ряду трендовой компоненты не всегда можно определить с помощью графика. Поэтому для выявления этой компоненты используются специальные критерии проверки гипотезы о существовании тренда во временном ряду.
Рассмотрим следующие критерии проверки гипотезы о существовании тренда во временном ряду:
1) критерий, основанный на сравнении средних уровней временного ряда;
2) критерий «восходящих и нисходящих» серий;
3) критерий серий, основанный на медиане выборочной совокупности.
При проверке гипотезы о существовании тренда во временном ряду с помощью критерия, основанного на сравнении средних уровней, временной ряд из N наблюдений делится на две равные части. Объём первой части yi равен
и объём второй части yj равен
Обе части временного ряда рассматриваются как самостоятельные выборочные совокупности, подчиняющиеся нормальному закону распределения.
Для каждой из выборок yi и yj рассчитываются следующие выборочные характеристики:
1) средние арифметические значения:
2) выборочные дисперсии:
При проверке предположения о наличии во временном ряду трендовой компоненты выдвигается основная гипотеза о равенстве генеральных средних для двух образованных выборочных совокупностей:
H0:?i=?j.
Альтернативной или обратной является гипотеза о неравенстве генеральных средних для двух образованных выборочных совокупностей:
H0:?i??j.
Основная гипотеза вида H0:?i=?j проверяется при справедливости предположения о равенстве генеральных дисперсий:
Гипотеза о равенстве дисперсий проверяется с помощью F-критерия Фишера.
Наблюдаемое значение F-критерия сравнивают с критическим значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора.
Критическое значение F-критерия Фишера определяется по таблице распределения Фишера-Снедекора в зависимости от уровня значимости а и двух степеней свободы
k1=n–1 и k2=N–n–2.
Наблюдаемое значение F-критерия при проверке основной гипотезы вида
определяется по формуле:
при условии, что
При проверке выдвинутых гипотез возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то основная гипотеза отклоняется.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл?Fкрит, то основная гипотеза принимается.
Гипотеза о равенстве генеральных средних проверяется с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.
Критическое значение t-критерия tкрит(а,N–2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (N–2) – число степеней свободы.
Наблюдаемое значение t-критерия при проверке основной гипотезы вида H0:?i=?j определяется по формуле:
При проверке гипотез возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. tнабл>tкрит, то основная гипотеза отвергается, и генеральные средние двух выборок не равны между собой. Следовательно, в исходном временном ряду присутствует трендовая компонента.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е. tнабл?tкрит, то основная гипотеза принимается, и генеральные средние двух выборок равны между собой. Следовательно, в исходном временном ряду отсутствует трендовая компонента.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
ВОСЕМЬ УРОВНЕЙ ЭНЕРГИИ
ВОСЕМЬ УРОВНЕЙ ЭНЕРГИИ Практическое применение медитативным состояниям мы находим при изучении восьми основных уровней энергии, применяющихся в бою. Переход с одного уровня на другой резко изменяет тактические характеристики вашего движения. Если противник сумел
2. Движение в ряду с соблюдением дистанции
2. Движение в ряду с соблюдением дистанции Скорость движения и дистанцию следует выбирать такими, чтобы исключить наезд на впереди идущее транспортное средство, даже в случае его резкого торможения.При выборе дистанции надо учитывать следующие факторы: * скорость
2. Объект в ряду субъектов
2. Объект в ряду субъектов «Сказал Гертруде: «Прощай, Августа!», кивнул, пригладил вихор и вышел во двор — там пусто…» Я пришел сюда по двум дорожкам. По одной я шел так: ночью, по пустынным улицам, я возвращался откуда-нибудь, где мне было пусто. Например, со дня рождения. Я
Всё пустяки в сравнении с вечностью
Всё пустяки в сравнении с вечностью Из повести «Молотов» (1861) русского писателя Николая Герасимовича Помяловского (1835—1863), слова художника Череванина.Первоисточник — известное латинское выражение: С точки зрения вечности.Цитируется шутливо-иронически как способ
19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы
19. Понятие статистической гипотезы. Общая постановка задачи проверки статистической гипотезы Проверка статистических гипотез – это один из основных методов математической статистики, который используется в эконометрике.С помощью методов математической статистики
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера В общем виде линейную модель множественной регрессии можно записать следующим образом:yi=?0+?1x1i+…+?mxmi+?i, где yi – значение i-ой результативной переменной,x1i…xmi – значения факторных
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций
73. Метод Форстера-Стьюарта проверки гипотез о наличии или отсутствии тренда. Метод Чоу проверки стабильности тенденций Одним из наиболее простых методов выявления трендовой компоненты во временном ряду является метод Форстера-Стьюарта.На первом шаге реализации
74. Аналитический вид тренда
74. Аналитический вид тренда Метод аналитического выравнивания с помощью функций времени или кривых роста является основным методом представления тренда в аналитическом виде, используемым в эконометрике. Суть данного метода заключается в аппроксимации временного ряда
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды
98. Нелинейный метод наименьших квадратов. Метод Койка
98. Нелинейный метод наименьших квадратов. Метод Койка Если модель с распределенным лагом характеризуется бесконечной величиной максимального лага L, то для оценивания неизвестных параметров данной модели применяются нелинейный метод наименьших квадратов и метод
ЖЕНЩИНА В СРАВНЕНИИ С ДРУГИМИ ПРЕДМЕТАМИ
ЖЕНЩИНА В СРАВНЕНИИ С ДРУГИМИ ПРЕДМЕТАМИ Первый, кто сравнил женщину с цветком, был великим поэтом, но уже второй был олухом. Генрих Гейне Первым поэтом был тот, кто сравнил женщину с цветком, а первым прозаиком — тот, кто сравнил женщину с другой женщиной. Константин
25. МОРФОЛОГИЧЕСКИЙ МЕТОД РАЗРАБОТКИ ПРОДУКТА. МЕТОД «МОЗГОВОЙ АТАКИ» И ОЦЕНОЧНОЙ ШКАЛЫ
25. МОРФОЛОГИЧЕСКИЙ МЕТОД РАЗРАБОТКИ ПРОДУКТА. МЕТОД «МОЗГОВОЙ АТАКИ» И ОЦЕНОЧНОЙ ШКАЛЫ 1. Описание проблемы без предложения каких-либо решений.2. Разложение проблемы на отдельные компоненты, которые могут влиять на решение.3. Предложение альтернативных решений для