Вынужденное приземление в Арктике

Вынужденное приземление в Арктике

«Вполне естественно, что мысль о месте спуска всегда занимает авиатора. Моторы могут закапризничать в любое время, и, если в этот момент нет места для спуска, ему придется плохо. Но все равно: куда ни кинь взгляд, нигде не было ни малейшего признака удобного для спуска места. Повсюду лед больше всего походил на огромное количество отдельных небольших участков, рассеянных по всей поверхности без конца, без края. А между всеми этими участочками воздвигнуты высокие каменные заборы», – так писал Рональд Амундсен после первого в мире полета до 88° с. ш. (Амундсен, 1936).

Впрочем, знаменитый норвежский полярник ошибался. Ледяные поля местами представляют настоящие природные взлетно-посадочные полосы. Но как отыскать такую ровную, лишенную препятствий льдину, если надувы и торосы, ропаки и трещины – все окрашено в однообразный белый цвет и все неразличимо. Да к тому же казалось невозможным определить с воздуха, насколько прочна льдина, выдержит ли она вес многотонной машины. Эти обстоятельства ставили под сомнение возможность посадки самолета на дрейфующий лед Центрального Полярного бассейна.

Однако советские полярные летчики полностью опровергли доводы скептиков. В мае 1937 г. Герои Советского Союза М. В. Водопьянов, А. Д. Алексеев, В. С. Молоков и И. П. Мазурук «приземлились» на ледяное поле у Северного полюса, осуществив высадку советской дрейфующей станции «Северный полюс». Вот как описывает первую посадку на льдину М. В. Водопьянов, возглавлявший воздушный отряд экспедиции на Северный полюс: «Льдину покрывали редкие пологие ропаки разной величины, а среди ропаков была ровная чистая площадка, примерно семьсот на четыреста метров... Развернувшись еще раз, я снова прошел над площадкой. Спирин открыл нижний люк штурманской рубки и приготовился по моему сигналу бросить дымовую шашку. Горит она всего полторы минуты: за это время нужно успеть сделать круг и, определив по дыму направление ветра, пойти на посадку.

Я быстро развернулся, зашел против ветра и снизился еще метров на десять. С огромной быстротой под нами замелькали торосы, вот-вот заденем их лыжами. Убираю газ, подвожу самолет на посадку. Медленно тяну штурвал на себя, машина опускает хвост, секунды две идет на высоте примерно одного метра... Резко беру штурвал на себя. Самолет мягко касается нетронутой целины снега. На всякий случай выключаю моторы – вдруг не выдержит льдина, и машина провалится... Снова включаю моторы: раз уж садиться, так по всем правилам – с работающими моторами. Пробежав двести сорок метров, самолет останавливается. 21 мая, 11 часов 35 минут...» (Водопьянов, 1955, 1958).

Рис. 47. Посадка самолета на советской дрейфующей станции СП-3 (май 1954 г.) (по Рюмкину, 1955).

В послевоенные годы летчики – участники советских высокоширотных воздушных экспедиций совершили сотни посадок на льдины, выбранные с воздуха, в различных районах Ледовитого океана (Бурханов, 1955). Весной 1951 и 1952 гг. также совершили ряд посадок на неподготовленные льдины американские летчики, участники высокоширотных воздушных океанографических экспедиций «Скиджамп-1» и «Скиджамп-2» (Лаппо, 1957).

Таким образом, опыт, приобретенный авиацией, показывает, что в случае необходимости летчик может посадить самолет на неподготовленную льдину, сохранить машину и спасти жизнь экипажу и пассажирам. Парашют в Арктике является таким же надежным средством спасения, как в любой другой климатической области земного шара. Впервые парашютный прыжок в Арктике осуществил врач-парашютист Павел Буренин. В июне 1946 г. он прыгнул с парашютом на прибрежный лед о-ва Бунге (Новосибирские острова) и, несмотря на сложные условия, благополучно приземлился, прооперировав пострадавшего зимовщика полярной станции (Шингарев, 1972).

Возможность совершения прыжков с парашютом на дрейфующий лед Центрального Полярного бассейна была доказана советскими парашютистами мастером спорта А. П. Медведевым и врачом В. Г. Воловичем (рис. 48). 9 мая 1949 г. в 13 час. 05 мин. они покинули борт самолета на высоте 600 м и приземлились у Северного полюса на дрейфующую льдину (Белоусов, 1972; Малков, 1974; Новиков, 1974).

Рис. 48. Парашютисты А. П. Медведев и В. Г. Волович после приземления на Северном полюсе (9 мая 1949 г.).

Управление парашютом в арктическом небе не отличалось какими-либо особенностями, а скорость спуска не превышала 4-6 м/сек. Определенную сложность представляет приземление на дрейфующий лед из-за различных препятствий: трещин, разводьев, торосов и т. д. Но если разводья или свежие трещины хорошо видны с большой высоты, так как они отличаются своей темной контрастной окраской, то груду торосов или стоящую торчком льдину можно заметить лишь в момент приземления. Целесообразно уже на высоте 200-300 м выбрать ровную площадку и, управляя куполом, достичь намеченной точки (Волович, 1957, 1961).

Где бы ни произошло вынужденное приземление на дрейфующем льду Центрального Полярного бассейна, на скалистом арктическом острове или в заснеженной тундре, главный враг, с которым экипажу придется начать борьбу с первых же минут автономного существования, – холод (Rescue Program, 1945; Anderson, Gloistien, 1969).

Совершенно очевидно, что чем теплее одежда, тем дольше может выдержать человек полярную стужу. Этим и объясняется, что в аварийный запас самолетов, совершающих полеты над арктическими районами, дополнительно укладываются меховая одежда, перчатки, муклуки и теплые носки (Fitness for duty, 1951; Schumann, 1965).

Существует определенная зависимость между теплоизолирующими свойствами одежды, величиной отрицательных температур и временем их переносимости. Как видно на графике (рис. 49), человек, одетый в шерстяное белье и ватную куртку, будет ощущать состояние теплового комфорта неопределенно долгое время при наружной температуре –10°, но начнет через полчаса мерзнуть при тридцатиградусном морозе (кривая 2-я). Столько же времени не будет ощущать холода человек в летнем лётном комбинезоне при температуре воздуха -5° (кривая 1-я) или при морозе -50°, если его одеть в шерстяное белье, брюки, свитер и меховую куртку (кривая 3-я). Меховая куртка с водоотталкивающим покрытием или теплая подстежка дадут выигрыш дополнительно 10-15 мин. (кривая 4-я) (Nesbitt et al., 1959).

Рис. 49. Время переносимости низких температур в зависимости от теплоизолирующих свойств одежды.

Таким образом, даже при самых высоких теплоизолирующих свойствах одежда может обеспечить поддержание положительного теплового баланса строго ограниченное время. Рано или поздно теплопотери начнут превосходить теплопродукцию, что поведет к охлаждению организма. Так, например, американский исследователь S. Lutz (1957) считает, что поддерживать положительный тепловой баланс с помощью одной только одежды затруднительно даже при температуре минус 12°.

Для расчетов ориентировочного времени переносимости человеком в одежде с различной теплоизоляцией при разных условиях внешней среды В. И. Кричагиным, В. М. Хроленко и А. И. Резниковым (1968) была составлена номограмма (рис. 50), в основу которой была положена формула: Q=S(33-T)/I, где Q – тепловой поток со всей поверхности тела (S=l,6 м2), в ккал/час; T – температура воздуха; I – фактическая теплоизоляция одежды в единицах clo, взятая из таблицы паспортизации соответственно ожидаемым условиям пребывания на холоде (покой, работа, ветер).

Вторая (нижняя) часть номограммы позволяет вычислить дефицит тепла в организме по формуле: D=Q-M, где D – дефицит тепла в организме (D, равное 80 ккал/час., соответствует переходу в состояние дискомфорта II степени, a D, равное 180 ккал/час, – III степени); Q – общие теплопотери (в ккал/час) организма, определяемые по верхней части номограммы; М – теплопродукция организма (в ккал/час).

Рис. 50. Номограмма для ориентировочных расчетов допустимого и предельного времени пребывания в различных комплектах одежды при разнообразных условиях и физической нагрузке.

Пользуясь этой номограммой, можно решать любые задачи по ориентировочному прогнозированию допустимых интервалов времени пребывания человека на холоде, если известны следующие исходные параметры: а) теплоизоляционные свойства одежды (I), взятые для ожидаемых условий (покой, физическая нагрузка, без ветра, при ветре); возможна и приближенная оценка фактической теплоизоляции комплекта по аналогии с какими-либо другими ранее изученными факторами; б) температура воздуха (реальная или предполагаемая); в) уровень физической нагрузки (измеренный, определенный по таблицам энерготрат или ожидаемый), при расчете можно использовать также величину энерготрат, требуемых для предотвращения замерзания человека до принятия мер к его спасению; г) допустимая в данной обстановке степень дискомфорта («холодно» или «очень холодно»).

Номограммой пользуются следующим образом. Выбранная величина теплоизоляции одежды откладывается на шкале I. На этом уровне проводится горизонталь до пересечения с линией, обозначающей заданную температуру воздуха. Из этой точки опускается перпендикуляр до дугообразной линии, которая имеет соответствующее обозначение уровня физической нагрузки (в ккал/час.), из последней точки проводится горизонталь до пересечения с правой шкалой, где указано время появления дискомфорта II степени, или левой, где отмечено наступление дискомфорта III степени, при котором создается серьезная угроза трудоспособности.

Если числовые значения фактических или ожидаемых энерготрат находятся правее вертикали, идущей от первой до второй точек пересечения, то это значит, что теплоотдача через данную одежду недостаточна, и организм будет перегреваться. Таким образом, по номограмме можно получить и количественную характеристику перегревания организма. Поскольку избыток тепла в этом случае будет рассеиваться за счет интенсивного потоотделения, можно воспользоваться величиной водопотери для прогнозирования степени дискомфорта. Соответственно нашим данным, при потоотделении свыше 250 г/час будет наблюдаться состояние дискомфорта II степени в сторону перегрева («жарко»).

Поскольку одежда, как бы ни были высоки ее теплозащитные качества, может при низких температурах поддерживать комфортное состояние лишь ограниченное время, строительство временного убежища становится крайне необходимым. Решение этой задачи в арктических условиях относительно несложно, так как в распоряжении терпящих бедствие имеется достаточное количество строительного материала – снега. Он не только легко поддается обработке, но и обладает высокой теплоизоляцией, благодаря высокому (до 90%) содержанию в нем воздуха (Чекотилло, 1945; Кузнецов, 1949). Вот почему в палатках со снежной обкладкой и снежных убежищах температура воздуха нередко оказывается на 10-15° выше наружной (табл. 5).

Таблица 5. Температура воздуха в укрытиях различного типа.

Хотя толщина снежного покрова в Арктике невелика и не превышает в среднем 25-90 см, под действием ветра снежные массы, перемещаясь, образуют валы-надувы, достигающие полутора-двухметровой высоты (Урванцев, 1935; Ведерников, 1962). Они порой бывают настолько плотны, что выдерживают вес тяжелого гусеничного трактора (Трешников, 1955). В таком сугробе с помощью ножа-мачете, складных лыж или другого импровизированного инструмента можно выкопать снежную траншею, прикрыв ее сверху парашютной тканью (см. рис. 51, 1), или прорыть тоннель, а затем, расширив до нужных размеров слепой конец, превратить его в снежную пещеру (рис. 51, 2) (Леонов, 1953; Кузнецов, 1949). Пол убежища утепляют парашютной тканью, а в качестве лежанки используют спасательную лодку, предварительно надув ее и перевернув кверху днищем. Если снег неглубок, рекомендуется из снежных кирпичей, возможно большего размера, или льдин с ближайшего тороса соорудить стенку-заслон высотой 1,5 м и длиной 1,5-2 м, поставив ее перпендикулярно к господствующему ветру. Это направление нетрудно определить по расположению застругов – своеобразных выступов и углублений в снежном покрове. Но, пожалуй, самым идеальным снежным убежищем является эскимосская хижина «иглу» (рис. 52).

Рис. 51. Снежные убежища. 1 – траншея; 2 – пещера.

Рис. 52. Иглу.

Многие столетия иглу служила единственным зимним жилищем континентальных эскимосов. Датский ученый – этнограф Кнуд Расмуссен, изучавший в течение многих лет жизнь и быт эскимосов на «Великом санном пути», от берегов Гудзонова залива до Аляски, писал, что порой эти снежные дома представляли настоящие архитектурные ансамбли. «В самом главном жилье могли легко разместиться на ночь двадцать человек. Эта часть снежного дома переходила в высокий портал, вроде холла, где люди счищали с себя снег, прежде чем войти в жилое теплое помещение. С другой стороны к главному жилью примыкала просторная светлая пристройка, где поселялись две семьи. Жира у нас было вдоволь, и поэтому горело по семь-восемь ламп зараз, отчего в этих стенах из белых снежных глыб стало так тепло, что люди могли расхаживать полуголыми в полное свое удовольствие» (Расмуссен, 1958).

Конечно, человеку в условиях автономного существования нет необходимости увлекаться архитектурными излишествами, но, построив такое жилье, он надежно защитит себя от ветра и холода. Существует множество рекомендаций о том, какова должна быть величина «иглу», каков наиболее оптимальный размер снежных кирпичей, как лучше оборудовать жилище внутри. Такие признанные полярные авторитеты, как В. Стефанссон, Р. Пири, Р. Амундсен, считают лучшим размером снежных блоков 45x60x10 см или 40-50x50 – 90x10 см. Один такой блок в зависимости от плотности снега весит 24-44 кг. Если снег не очень плотен, толщину блока можно увеличить с 10 до 20 см (Берман, 1973). О том, как лучше строить иглу, лучше всего рассказывает В. Стефанссон в своей книге «Гостеприимная Арктика» (1948).

«...Я в первый раз имел случай наблюдать постройку снежной хижины эскимосами. Это показалось мне очень простым делом, хотя в обширной полярной литературе постройка снежных хижин изображается как нечто непостижимое для белых, доступное только национальному таланту эскимосов.

Таким образом, представилась долгожданная возможность применить на практике мои теоретические познания о постройке снежных хижин, и мы в течение 3 часов соорудили хижину, имевшую внутренний диаметр в 3 м при высоте 2 м. Она была построена не хуже тех сотен хижин, которые мне пришлось сооружать впоследствии, с той только разницей, что после некоторой практики мы втроем сооружали такую хижину за 45 минут.

...Прежде чем приступить к постройке хижины, мы разыскивали достаточно глубокий и плотный снежный сугроб. Предварительная проверка его плотности заключалась в том, что, когда мы по нему ходили в наших мягких оленьих сапогах, ноги не должны были проваливаться, а оставлять на снегу лишь слабый отпечаток; для более основательной проверки мы протыкали снег тонким прутом.

Найдя подходящий сугроб, мы вырезали из него нашими 40-сантиметровыми «мясницкими ножами» или 50-сантиметровыми тесаками четырехгранные глыбы толщиной около 10 см, шириной в 40-50 см и длиной в 50-90 см. В зависимости от их размеров и от плотности снега эти глыбы весят от 22 до 40 кг и должны быть достаточно прочными, чтобы выдерживать, во-первых, свой собственный вес во время переноски и укладки на ребро, а во-вторых, если они служат материалом для нижней трети хижины, также и вес поддерживаемых ими верхних глыб, составляющих 120-200 кг.

Рекомендуется строить хижину на ровном сугробе глубиной не менее 1 м, образующем горизонтальную площадку. Первую глыбу укладывают на ребро, но при этом слегка подрезают ножом ее внутреннюю кромку, чтобы глыба наклонилась внутрь; если строится большой снежный дом, угол наклона должен быть очень мал, а для небольшой хижины требуется довольно значительный наклон.

Овал или круг, которым определяется план хижины, можно получить просто на глаз, укладывая соответствующим образом нижний ряд глыб. Но я предпочитаю начертить круг посредством веревки, на концах которой привязано по колышку; один колышек втыкают там, где должен быть центр хижины, и, натягивая веревку, описывают на снегу окружность другим колышком, подобно тому как школьники чертят на бумаге окружность посредством карандаша, бечевки и булавки. Работая на глаз, даже самый опытный строитель может ошибиться и сделать хижину слишком тесной или слишком просторной, тогда как веревка служит точным радиусом для получения надлежащей площади пола, заранее рассчитанной на известное число обитателей путем очень несложного математического вычисления.

После того как уложена на ребро первая глыба, нетрудно уложить остальные глыбы вплотную одна к другой. Свойства применяемого снега таковы, что при морозной погоде глыба, лежащая на сугробе или оставшаяся приложенной к другой глыбе в течение 5-10 минут, оказывается сцементированной с этим сугробом и глыбой во всех точках соприкосновения и ее невозможно оторвать не разломав.

Когда уложен первый ярус, второй может быть начат несколькими способами. Простейший из них заключается в том, что от верхней кромки одной из глыб первого яруса производят разрез по диагонали до нижней кромки той же глыбы или же второй или третьей снежной глыбы. В образовавшуюся выемку укладывают первую глыбу второго яруса так, чтобы она своим торцом прилегала впритык к последней глыбе нижнего яруса. Затем вплотную к первой глыбе второго яруса укладывают вторую глыбу того же яруса и т. д., продолжая постройку по спирали. Глыбы каждого яруса должны быть наклонены внутрь под большим углом, чем глыбы ниже лежащего яруса, и под меньшим углом, чем глыбы выше лежащего, т. е. должен получиться более или менее правильный купол.

...Вследствие липкости снега глыбы не скользят, а благодаря подрезыванию их кромок они оказываются уложенными так же ровно и плотно, как камни в настоящем каменном куполе.

...Строить из снега гораздо легче, чем из камня, так как камень трудно обрабатывать и ему должна быть придана совершенно точная форма, прежде чем он будет уложен на место, а снежная глыба этого не требует совершенно. Ее постепенно прислоняют к ближайшей предшествующей глыбе и отрезают кусок за куском, пока данная глыба не уляжется в надлежащем положении. Глыбы не могут упасть, если не будут предварительно разломаны.

...Если в постройке участвуют 4 человека, то обычно один вырезает глыбы, второй носит и подает их, третий строит хижину изнутри, а четвертый следует за строителем и забивает мягким снегом все щели, оставшиеся между глыбами. Через 10 мин. этот снег оказывается более твердым, чем сами глыбы, так что через полчаса по окончании постройки хижина уже обладает довольно значительной прочностью.

Когда купол готов, сквозь сугроб роют тоннель, ведущий в хижину и заканчивающийся своего рода люком в полу последней. Большинство эскимосов, не понимая соответствующих принципов термодинамики, устраивают дверной проем просто в стене хижины выше уровня поля. Очевидно, что, когда такой проем открыт, а хижина отапливается изнутри, нагретый воздух будет все время идти наружу через верхнюю половину дверного проема, а через нижнюю половину будет происходить приток наружного холодного воздуха. Если же входное отверстие находится на уровне пола или несколько ниже его, то даже при открытом отверстии теплый воздух не может уходить через него, так как он стремится только вверх; вместе с тем, пока хижина наполнена нагретым воздухом, холодный наружный воздух не может проникнуть в нее через входное отверстие, так как два тела не могут одновременно занимать одно и то же пространство. Поэтому входное отверстие, расположенное не выше уровня пола, незачем закрывать, и мы всегда оставляем его открытым.

Когда хижина нагревается изнутри керосиновой печкой, горящим тюленьим жиром или теплом и дыханием людей, в воздухе помещения накопляются вредные продукты горения, и становится необходимой вентиляция. Поэтому мы устраиваем в крыше вентиляционное отверстие, диаметр которого зависит от наружной температуры, от количества имеющегося топлива, а также от того, бодрствуют ли обитатели дома или спят. По мере того как нагретый воздух выходит через вентиляционное отверстие, он постепенно заменяется свежим наружным воздухом, поступающим снизу через входное отверстие.

...Когда тоннель прорыт, в хижину вносят постели и покрывают весь пол, за исключением небольшого участка, предназначенного для стряпни, слоем оленьих шкур, обращенных шерстью вниз. Поверх этого слоя расстилают другой слой шкур шерстью вверх. Эта двойная изоляция требуется потому, что внутренность хижины будет нагреваться, а люди будут сидеть на иолу и впоследствии спать на нем, так что без хорошей изоляции снег под постелями мог бы растаять и промочить их. Когда температура наружного воздуха равна -16°, двойной слой оленьих шкур совершенно предотвращает таяние снега под постелями, и этот снег остается таким же сухим, как песок в пустыне.

Когда пол уже покрыт шкурами, а постели, кухонная утварь, письменные принадлежности и другие вещи внесены в хижину, мы зажигали огонь. Если топлива достаточно, то хижину отапливают до тех пор, пока снег на стенах и на своде не начнет таять. Иногда, если это позволяют имеющиеся запасы топлива, температура внутри хижины доводится ненадолго до 21°, а затем мы время от времени ощупываем свод и стены, чтобы следить за ходом таяния. Быстрее всего оно, конечно, происходит на своде, так как под ним скапливается нагретый воздух, тогда как нижний, ближайший к полу ярус глыб обычно совершенно не тает. При таянии не получается капели, так как сухой снег, подобно лучшей пропускной бумаге, впитывает в себя воду, как только она образуется. Когда внутренний слой свода и стен сделается достаточно влажным от таяния, мы гасим огонь или пробиваем в своде большое отверстие (или же делаем и то и другое) и даем хижине промерзнуть. Благодаря этому свод и стены покрываются изнутри стекловидной ледяной пленкой, что значительно увеличивает их прочность; кроме того, если случайно задеть за стенку, покрытую льдом, то к одежде ничего не пристанет, тогда как при задевании за стену, состоящую из сухого снега, можно «выбелить» плечо, и порядочное количество снега может упасть на постель.

В конце концов, хижина оказывается такой прочной, что на нее может влезть без особых мер предосторожности любое число людей. Случалось, что медведи влезали на эти хижины, и, насколько мне известно, ни одна хижина не проломилась. Впрочем, прочность снежной хижины несколько похожа на прочность яичной скорлупы, которую трудно раздавить нажимом, но легко проломить резким ударом. Если медведь захочет вломиться в снежную хижину, то может без труда пробить большое отверстие одним ударом лапы.

...Если хижина была построена при 40°, то каждая глыба стены обладала такой же температурой и содержала много «скрытого холода». Чтобы нейтрализовать его, необходимо довольно долго поддерживать температуру в 21°. Снег является таким плохим проводником тепла, что, когда «скрытый холод» уже нейтрализован, тепло наших тел поддерживает температуру помещения значительно выше точки замерзания даже и при открытом вентиляционном отверстии в своде. Однако если наружная температура несколько повысится по сравнению с той, которая существовала во время постройки хижины, то тепло наших тел или нагрев от стряпни может настолько повысить температуру помещения, что свод начнет таять. Это мы считаем не столько признаком чрезмерного нагрева помещения, сколько признаком чрезмерной толщины крыши, а потому кто-нибудь из нас выходит наружу и соскабливает ножом с крыши слой снега толщиной в 5-10 см, чтобы наружный холод мог проникнуть внутрь и прекратить таяние, нейтрализовав нагрев. Если на следующий день произойдет похолодание наружного воздуха, то на своде образуется иней, который, в виде снежных хлопьев, падает на постель. Это означает, что крыша теперь стала слишком тонкой, а потому кто-нибудь выходит с лопатой и набрасывает на крышу добавочный слой снега».

Приступая к возведению иглу, необходимо помнить о главном принципе: жилище по размеру должно соответствовать числу его будущих жителей. Слишком маленькая хижина будет тесной и неудобной, слишком большая, помимо лишней траты сил на ее строительство, потребует увеличения расхода топлива, запас которого и без того невелик (Кузнецов, 1949). Для трех человек вполне достаточной будет хижина диаметром 2,2-2,4 м и высотой 1,5-1,8 м (Пири, 1906; Амундсен, 1939). Обладая некоторыми навыками, такую иглу можно возвести за 1-2 часа. При недостатке опыта потребуется несколько больше времени. Но все труды окупятся с лихвой, когда хижина будет готова и в ней запылает хотя бы самый крохотный огонек.

Надежным жилищем и главное не требующим при строительстве особых физических усилий может стать надувной спасательный плот, входящий в аварийный комплект многих летательных аппаратов. При самых скромных средствах обогрева (2 стеариновые свечи) в 25°-ный мороз удается поднять температуру воздуха внутри плота с -20° до +1° (Westergaard, 1971). Температуру удастся поддерживать еще более высокой, если плот дополнительно утеплить слоем снежных блоков.

Для обогрева временного убежища, приготовления пищи, таяния и кипячения воды используют самые различные средства: стеариновые свечи и таблетки сухого спирта, которые входят в комплект НАЗов, жир добытых на охоте тюленей, моржей, белых медведей, карликовые деревца, торфяной дерн, сухую траву, плавник (выброшенные на берег стволы и крупные ветви деревьев). Торфяной дерн предварительно нарезается небольшими брикетами и подсушивается, а сухую траву обязательно связывают в пучки (Сдобников, 1953).

Если удалось произвести вынужденную посадку, то в распоряжении экипажа окажется достаточное количество горючего, смазочных материалов, чтобы не страдать от холода. Масло из двигателя рекомендуется слить немедленно, пока оно не застыло. Если под руками нет никакой емкости, масло сливают прямо на снег, а когда оно застынет, куски его используют в жировых лампах.

Жировая лампа – наиболее простое и удобное устройство для обогрева небольшого убежища. Конструкция ее несложна. В донышке консервной банки пробивается отверстие, через которое опускают фитиль из куска бинта, носового платка или другой ткани, предварительно смоченный или натертый жиром. Куски жира укладываются сверху на донышко, и жир, плавясь, будет стекать вниз, поддерживая пламя. Приток воздуха в лампу обеспечивают три-четыре отверстия, пробитые сбоку. Лампа другого типа изготавливается из плоской консервной банки, коробки от аптечки или просто загнутого по краям металлического листа. Ее заполняют горючим, в которое опускают 2-3 фитиля. Пара таких ламп может обеспечить в убежище положительную температуру при самом сильном морозе.