Бор (химич. элемент)

We use cookies. Read the Privacy and Cookie Policy

Бор (химич. элемент)

Бор (лат. Borum), В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух стабильных изотопов: 10 B (19%) и 11 B (81%). Ранее других известное соединение Б. — бура — упоминается в сочинениях алхимиков под арабским названием «бурак» и латинским Borax, откуда и произошло наименование «бор». Свободный Б. (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 нагреванием борного ангидрида B2 O3 с металлическим калием. Общее содержание Б. в земной коре 3•10-4 % по массе. В природе Б. в свободном состоянии не обнаружен. Многие соединения Б. широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Б. входит в состав многих изверженных и осадочных пород. Соединения Б. найдены в нефтяных водах, морской воде, соляных озёрах, горячих источниках, в вулканических и сопочных грязях, во многих почвах. О главных природных соединениях Б., служащих для его промышленного получения, см. в ст. Бораты природные .

  Физические и химические свойства. Известно несколько кристаллических модификаций Б. Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Б. образуют в этих структурах трёхмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твёрдость Б. Однако строение каркаса в структурах Б. гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Б. служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Б. (рис. , а). Икосаэдры соединяются между собой как непосредственно (рис. , б), так и посредством промежуточных атомов Б., не входящих в состав какого-либо икосаэдра (рис. , в). При таком строении оказывается, что атомы Б. в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних «соседей» и 2 более далёких). Т. к. на внешней оболочке атома Б. находятся всего 3 электрона (электронная конфигурация 2s2 2p), на каждую присутствующую в кристаллическом Б. связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Б. осуществляется особый тип ковалентной связи — многоцентровая связь с дефицитом электронов. В соединениях ионного типа Б. 3-валентен. Так называемый «аморфный» Б., получаемый при восстановлении B2 O3 металлическим натрием или калием, имеет плотность 1,73 г/см 3 . Чистый кристаллический Б. имеет плотность 2,3 г/см 3 , температуру плавления 2075 °С, температуру кипения 3860 °С; твёрдость Б. по минералогической шкале 9, микротвёрдость 34 Гн/м 2 (3400 кгс/мм 2 ). Кристаллический Б. — полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°С электрическая проводимость Б. увеличивается на несколько порядков, причём знак проводимости меняется (электронная — при низких температурах, дырочная — при высоких) (см. Полупроводниковые материалы ).

  Химически Б. при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причём кристаллический Б. менее активен, чем аморфный. С повышением температуры активность Б. возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700 °С Б. горит красноватым пламенем, образуя борный ангидрид B2 O3 — бесцветную стекловидную массу. При нагревании выше 900 °С Б. с азотом образует бора нитрид BN, при нагревании с углём — бора карбид B4 C, с металлами — бориды . С водородом Б. заметно не реагирует; его гидриды (бороводороды ) получают косвенным путём. При температуре красного каления Б. взаимодействует с водяным паром: 2B + 3Н2 О = B2 O3 + 3H2 . В кислотах Б. при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H3 BO3 . Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

  Во фториде BF3 и других галогенидах Б. связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Б. в галогениде BX3 недостаёт пары электронов, молекулы галогенидов, особенно BFз, присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака

В таких комплексных соединениях атом Б. окружен четырьмя атомами (или группами атомов), что соответствует характерному для Б. в его соединениях координационному числу 4. Важные комплексные соединения Б. — борогидриды , например Na [BH4 ], и фтороборная, или борофтористоводородная, кислота H [BF4 ], образующаяся из BF3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Б. и его соединений — их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF3 (кремниевая даёт SiF4 ). Бороводороды напоминают кремневодороды, а карбид Б. — карбид кремния, и т.д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В — 3 валентных электрона, у N — 5, у двух атомов С — по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Б. и азот. Так, боразан BH3 —NH3 подобен этану СН3 —СН3 , а боразен BH2 =NH2 и простейший боразин BH?NH подобны соответственно этилену СН2 =СН2 и ацетилену CH?CH. Если тримеризация ацетилена C2 H2 даёт бензол C6 H6 , то аналогичный процесс приводит от боразина BHNH к боразолу B3 N3 H6 (см. также Борорганические соединения ).

  Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием — борный ангидрид. Восстановление В2 О3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают BCl3 водородом при 1200°С или разлагают пары BBr3 на танталовой проволоке, раскалённой до 1500°С. Чистый Б. получают также термическим разложением бороводородов.

  Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001—0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде ферробора , т. е. сплава железа с 10—20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1—0,5 мм ) улучшает не только механические свойства, но и стойкость стали против коррозии (см. Борирование ). Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов , служащих для прекращения или замедления реакции деления. Б. в виде газообразного BF3 используют в счётчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные a-частицы, которые легко регистрировать; число же a-частиц равно числу нейтронов, поступивших в счётчик: 10 5 B + 1 0 n = 7 3 Li + 4 2 a) (см. также Нейтронные детекторы и индикаторы ). Сам Б. и его соединения — нитрид BN, карбид B4 C, фосфид ВР и др. — применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. BF3 — катализатор некоторых органических реакций.

  Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.

  В. Л. Василевский.

  Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. — отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования , вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения (см. Микроудобрения ). В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., — гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности, «плешины», — один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60—600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта — борный энтерит.

  Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962; Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, «Агрохимия», 1965, № 11.

  В. В. Ковальский.

Рисунок к ст. Бор (химич. элемент).