61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
Автокорреляцией называется корреляция, возникающая между уровнями изучаемой переменной. Это корреляция, проявляющаяся во времени. Наличие автокорреляции чаще всего характерно для данных, представленных в виде временных рядов.
Автокорреляцией остатков модели регрессииei (или случайных ошибок регрессии модели ?i) называется корреляционная зависимость между настоящими и прошлыми значениями остатков.
Временным лагом называется величина сдвига между рядами остатков модели регрессии.
Величина временного лага определяет порядок коэффициента автокорреляции. Например, если между остатками en и en-1 существует корреляционная зависимость, то временной лаг равен единице. Следовательно, данную корреляционную зависимость можно охарактеризовать с помощью коэффициента автокорреляции первого порядка между рядами остатков e1…en-1 и e2…en.
Одно из условий, которое учитывается при построении нормальной линейной модели регрессии, заключается в некоррелированности случайных ошибок модели регрессии, т. е. ковариация случайных ошибок любых двух разных наблюдений равна нулю:
Если в модели регрессии случайные ошибки коррелированны между собой, то данное условие нарушается.
Последствия, к которым может привести наличие в модели регрессии автокорреляции остатков, совпадают с последствиями, к которым может привести наличие в модели регрессии гетероскедастичности:
1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;
2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
Наиболее наглядным способом обнаружения автокорреляции случайных остатков регрессионной модели является графический метод. При этом осуществляется построение графиков автокорреляционной и частной автокорреляционной функций.
Автокорреляционной функцией называется функция оценки коэффициента автокорреляции в зависимости от величины временного лага между исследуемыми рядами.
Графически автокорреляционная функция изображается с помощью коррелограммы. Коррелограмма отражает численно и графически коэффициенты автокорреляции и их стандартные ошибки для последовательности лагов из определённого диапазона (например, от 1 до 25). При этом по оси Х откладываются значения ? (тау) – величины сдвига между рядами остатков, которые совпадают с порядком автокорреляционного коэффициента. Также на коррелограмме отмечается диапазон в размере двух стандартных ошибок коэффициентов автокорреляции на каждом лаге.
Частная автокорреляционная функция является более углублённой версией обычной автокорреляционной функции. Её отличительной особенностью является исключение корреляционной зависимости между наблюдениями внутри лагов, т. е. частная автокорреляционная функция на каждом лаге отличается от обычной автокорреляционной функции на величину удалённых автокорреляций с меньшими временными лагами. Следовательно, частная автокорреляционная функция более точно характеризует автокорреляционные зависимости внутри временного ряда.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии
18. Характеристика качества модели регрессии
18. Характеристика качества модели регрессии Качеством модели регрессии называется адекватность построенной модели исходным (наблюдаемым) данным.Для оценки качества модели регрессии используются специальные показатели.Качество линейной модели парной регрессии
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.Основная гипотеза состоит в предположении о незначимости
39. Модели регрессии, нелинейные по факторным переменным
39. Модели регрессии, нелинейные по факторным переменным При исследовании социально-экономических явлений и процессов далеко не все зависимости можно описать с помощью линейной связи. Поэтому в эконометрическом моделировании широко используется класс нелинейных
40. Модели регрессии, нелинейные по оцениваемым коэффициентам
40. Модели регрессии, нелинейные по оцениваемым коэффициентам Нелинейными по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели ?0…?n.К моделям регрессии, нелинейными по
41. Модели регрессии с точками разрыва
41. Модели регрессии с точками разрыва Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.Модели регрессии делятся на два класса:1) кусочно-линейные модели регрессии;2)
44. Методы нелинейного оценивания коэффициентов модели регрессии
44. Методы нелинейного оценивания коэффициентов модели регрессии Функцией потерь или ошибок называется функционал вида Также в качестве функции потерь может быть использована сумма модулей отклонений наблюдаемых значений результативного признака у от теоретических
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
57. Гетероскедастичность остатков модели регрессии
57. Гетероскедастичность остатков модели регрессии Случайной ошибкой называется отклонение в линейной модели множественной регрессии:?i=yi–?0–?1x1i–…–?mxmiВ связи с тем, что величина случайной ошибки модели регрессии является неизвестной величиной, рассчитывается
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.Предположим, что
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии Основным условием проведения теста Голдфелда-Квандта является предположение о нормальном законе распределения случайной ошибки ?i модели регрессии.Рассмотрим применение данного
60. Устранение гетероскедастичности остатков модели регрессии
60. Устранение гетероскедастичности остатков модели регрессии Существует множество методов устранения гетероскедастичности остатков модели регрессии. Рассмотрим некоторые из них.Наиболее простым методом устранения гетероскедастичности остатков модели регрессии
62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии Помимо автокорреляционной и частной автокорреляционной функций для обнаружения автокорреляции остатков модели регрессии используется критерий Дарбина-Уотсона. Однако данный критерий
63. Устранение автокорреляции остатков модели регрессии
63. Устранение автокорреляции остатков модели регрессии В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков
67. Модели регрессии с переменной структурой. Фиктивные переменные
67. Модели регрессии с переменной структурой. Фиктивные переменные При построении модели регрессии может возникнуть ситуация, когда в неё необходимо включить не только количественные, но и качественные переменные (например, возраст, образование, пол, расовую
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
80. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции Временной ряд является нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.Нестационарные временные ряды