62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
62. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
Помимо автокорреляционной и частной автокорреляционной функций для обнаружения автокорреляции остатков модели регрессии используется критерий Дарбина-Уотсона. Однако данный критерий можно применять только для обнаружения автокорреляции первого порядка между соседними рядами случайных остатков.
Предположим, что на основе собранных данных была построена линейная модель множественной регрессии, которая представлена в матричном виде:
Y=X?+?t.
Присутствующая в данной модели регрессии автокорреляция первого порядка может генерировать ошибку, определяемую по формуле:
?t=??t-1+?t
где ? – коэффициент автокорреляции, |?|<1;
?t – независимые, одинаково распределённые случайные величины с нулевым математическим ожиданием и дисперсией G2(?t).
Перед исследователем стоит задача определения наличия автокорреляции первого порядка в построенной модели регрессии.
Выдвигается основная гипотеза о незначимости коэффициента автокорреляции первого порядка:
H0: ?1=0.
Обратная или конкурирующая гипотеза состоит в утверждении о значимости коэффициента автокорреляции:
H0: ?1?0.
Проверка выдвинутых гипотез осуществляется с помощью критерия Дарбина-Уотсона.
Наблюдаемое значение критерия Дарбина-Уотсона (вычисленное на основе выборочных данных) сравнивают с критическим значением критерия Дарбина-Уотсона, которое определяется по специальным таблицам.
Критическое значение критерия Дарбина-Уотсона определяется в зависимости от значений верхней d1 и нижней d2 границ критерия по специальным таблицам. Данные границы определяются в зависимости от объёма выборочной совокупности n и числа степеней свободы (h-1), где h – количество оцениваемых по выборке параметров.
Наблюдаемое значение критерия Дарбина-Уотсона при проверке основной гипотезы вида H0: ?1=0 определяется по формуле:
где et – остатки модели регрессии в наблюдении t, определяемые по формуле:
et-1 – остатки модели регрессии в наблюдении t-1, определяемые по формуле:
Приближённое значение величины критерия Дарбина-Уотсона можно также рассчитать по формуле:
dнабл?2(1-r1),
где r1 – выборочный коэффициент автокорреляции первого порядка. В зависимости от величины данного коэффициента, наблюдаемое значение критерия Дарбина-Уотсона определяется следующим образом:
1) если r1=0, то dнабл=2;
2) если r1=+1, то dнабл=0;
3) если r1=-1, то dнабл=4.
Если коэффициент автокорреляции является положительной величиной, то при проверке гипотез возможно возникновение следующих ситуаций.
Если наблюдаемое значение критерия Дарбина-Уотсона меньше критического значения его нижней границы, т. е. dнабл‹d1, то основная гипотеза об отсутствии автокорреляции первого порядка между остатками модели регрессии отклоняется.
Если наблюдаемое значение критерия Дарбина-Уотсона больше критического значения его верхней границы, т. е. dнабл>d2, то основная гипотеза об отсутствии автокорреляции первого порядка между остатками модели регрессии принимается.
Если наблюдаемое значение критерия Дарбина-Уотсона находится между верхней и нижней критическими границами, т. е. d1< dнабл< d2, то достаточных оснований для принятия единственно правильного решения нет, необходимы дополнительные исследования.
Если коэффициент автокорреляции является отрицательной величиной, то при проверке гипотез возможно возникновение следующих ситуаций.
Если наблюдаемое значение критерия Дарбина-Уотсона больше критической величины 4 – d1, т.е. dнабл>4 – d1, то основная гипотеза об отсутствии автокорреляции первого порядка между остатками модели регрессии отклоняется
Если наблюдаемое значение критерия Дарбина-Уотсона меньше критической величины 4 – d2, т. е. dнабл‹4 – d2, то основная гипотеза об отсутствии автокорреляции первого порядка между остатками модели регрессии принимается.
Если наблюдаемое значение критерия Дарбина-Уотсона находится в критическом интервале между величинами 4 – d1 и 4– d2, т.е. 4 – d1< dнабл<4 – d2, , то достаточных оснований для принятия единственно правильного решения нет, необходимы дополнительные исследования.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
11. Критерии оценки неизвестных коэффициентов модели регрессии
11. Критерии оценки неизвестных коэффициентов модели регрессии В ходе регрессионного анализа была подобрана форма связи, которая наилучшим образом отражает зависимость результативной переменной у от факторной переменной х:y=f(x).Необходимо оценить неизвестные
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии
18. Характеристика качества модели регрессии
18. Характеристика качества модели регрессии Качеством модели регрессии называется адекватность построенной модели исходным (наблюдаемым) данным.Для оценки качества модели регрессии используются специальные показатели.Качество линейной модели парной регрессии
25. Точечный и интервальный прогнозы для модели парной регрессии
25. Точечный и интервальный прогнозы для модели парной регрессии Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.Основная гипотеза состоит в предположении о незначимости
39. Модели регрессии, нелинейные по факторным переменным
39. Модели регрессии, нелинейные по факторным переменным При исследовании социально-экономических явлений и процессов далеко не все зависимости можно описать с помощью линейной связи. Поэтому в эконометрическом моделировании широко используется класс нелинейных
40. Модели регрессии, нелинейные по оцениваемым коэффициентам
40. Модели регрессии, нелинейные по оцениваемым коэффициентам Нелинейными по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели ?0…?n.К моделям регрессии, нелинейными по
41. Модели регрессии с точками разрыва
41. Модели регрессии с точками разрыва Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.Модели регрессии делятся на два класса:1) кусочно-линейные модели регрессии;2)
44. Методы нелинейного оценивания коэффициентов модели регрессии
44. Методы нелинейного оценивания коэффициентов модели регрессии Функцией потерь или ошибок называется функционал вида Также в качестве функции потерь может быть использована сумма модулей отклонений наблюдаемых значений результативного признака у от теоретических
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
57. Гетероскедастичность остатков модели регрессии
57. Гетероскедастичность остатков модели регрессии Случайной ошибкой называется отклонение в линейной модели множественной регрессии:?i=yi–?0–?1x1i–…–?mxmiВ связи с тем, что величина случайной ошибки модели регрессии является неизвестной величиной, рассчитывается
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.Предположим, что
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии
59. Тест Голдфелда-Квандта обнаружения гетероскедастичности остатков модели регрессии Основным условием проведения теста Голдфелда-Квандта является предположение о нормальном законе распределения случайной ошибки ?i модели регрессии.Рассмотрим применение данного
60. Устранение гетероскедастичности остатков модели регрессии
60. Устранение гетероскедастичности остатков модели регрессии Существует множество методов устранения гетероскедастичности остатков модели регрессии. Рассмотрим некоторые из них.Наиболее простым методом устранения гетероскедастичности остатков модели регрессии
61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
61. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция Автокорреляцией называется корреляция, возникающая между уровнями изучаемой переменной. Это корреляция, проявляющаяся во времени. Наличие автокорреляции чаще всего
63. Устранение автокорреляции остатков модели регрессии
63. Устранение автокорреляции остатков модели регрессии В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков