9. Общая модель парной (однофакторной) регрессии
9. Общая модель парной (однофакторной) регрессии
Общая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.
Регрессионным анализом называется определение аналитического выражения связи между исследуемыми переменными, в котором изменение результативной переменной происходит под влиянием факторной переменной.
Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными.
Предположим, что имеется набор значений двух переменных: yi (результативная переменная) и xi (факторная переменная). Между этими переменными существует зависимость вида: y = f (x).
Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию ? = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными.
Для определения аналитической формы зависимости между исследуемыми переменными применяются следующие методы:
1) графический метод или визуальная оценка характера связи. В этом случае на линейном графике по оси абсцисс откладываются значения факторной переменной х, а по оси ординат – значения результативной переменной у. Затем на пересечении соответствующих значений отмечаются точки. Полученный точечный график в системе координат (х, у) называется корреляционным полем. Линия, которая соединяет точки на графике, называется эмпирической линией. По её виду можно судить не только о наличии, но и о форме зависимости между изучаемыми переменными;
2) на основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности;
3) определение аналитической формы зависимости между переменными экспериментальным путём.
При исследовании зависимости между двумя переменными чаще всего используется линейная форма связи. Это связано с двумя обстоятельствами:
1) чёткая экономическая интерпретация параметров линейной модели регрессии;
2) в большинстве случаев нелинейные модели регрессии преобразуются к линейному виду.
Общий вид модели парной регрессии зависимости переменной у от переменной х:
yi=?0+?1xi+?i,
где yi– результативные переменные,
xi– факторные переменные,
?0, ?1 – параметры модели регрессии, подлежащие оцениванию;
?i – случайная ошибка модели регрессии. Данная величина является случайной, она характеризует отклонения реальных значений результативных переменных от теоретических, рассчитанных по уравнению регрессии.
Присутствие случайной ошибки в модели регрессии порождено следующими источниками:
1) нерепрезентативность выборки. Модель парной регрессии в большинстве случаев является большим упрощением истинной зависимости между переменными, потому что в модель входит только одна факторная переменная, не способная полностью объяснить вариацию результативной переменной. При этом результативная переменная может быть подвержена влиянию множества других факторных переменных в гораздо большей степени;
2) ошибки, возникающие при измерении данных;
3) неправильная функциональная спецификация модели.
Коэффициент ?1, входящий в модельпарной регрессии, называется коэффициентом регрессии. Он характеризует, на сколько в среднем изменится результативная переменная у при условии изменения факторной переменной х на единицу своего измерения. Знак коэффициента регрессии указывает на направление связи между переменными:
1) если ?1›0, то связь между изучаемыми переменными (с уменьшением факторной переменной х уменьшается и результативная переменная у, и наоборот);
2) если ?1‹0, то связь между изучаемыми переменными (с увеличением факторной переменной х результативная переменная у уменьшается, и наоборот).
Коэффициент ?0, входящий в модель парной регрессии, трактуется как среднее значение результативной переменной у при условии, что факторная переменная х равна нулю. Но если факторная переменная не имеет и не может иметь нулевого значения, то подобная трактовка коэффициента ?0 не имеет смысла.
Общий вид модели парной регрессии в матричном виде:
Y= X* ?+ ?,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент ?0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
График парной высадки
График парной высадки Некоторые растения прекрасно уживаются друг с другом. Высаживая вместе определённые растения, вы тем самым увеличиваете свой потенциальный урожай и отпугиваете садовых вредителей. Ниже приводится список растений, которые отлично подходят для
2.1. Общая модель отмывания денег
2.1. Общая модель отмывания денег Процедура легализации преступных доходов (другими словами — отмывание денег) имеет решающее значение для деятельности практически всех форм транснациональной и организованной преступности. Это функция присуща практически всем
10. Нормальная линейная модель парной (однофакторной) регрессии
10. Нормальная линейная модель парной (однофакторной) регрессии Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):yi=?0+?1xi+?i,где yi– результативные переменные, xi – факторные переменные, ?0, ?1 – параметры
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии
22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
22. Проверка гипотезы о значимости коэффициентов модели парной регрессии Проверкой статистической гипотезы о значимости отдельных параметров модели называется проверка предположения о том, что данные параметры значимо отличаются от нуля.Необходимость проверки
24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов
24. Проверка гипотезы о значимости модели парной регрессии. Теорема о разложении сумм квадратов Проверка гипотезы о значимости линейной модели парной регрессии состоит в проверке гипотез о значимости коэффициентов регрессии ?0 и ?1 или значимости парного коэффициента
25. Точечный и интервальный прогнозы для модели парной регрессии
25. Точечный и интервальный прогнозы для модели парной регрессии Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных
26. Линейная модель множественной регрессии
26. Линейная модель множественной регрессии Построение модели множественной регрессии является одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.Модель
28. Линейная модель множественной регрессии стандартизированного масштаба
28. Линейная модель множественной регрессии стандартизированного масштаба Помимо классического метода наименьших квадратов для определения неизвестных параметров линейной модели множественной регрессии ?0…?m используется метод оценки данных параметров через
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.Основная гипотеза состоит в предположении о незначимости
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена МНК-оценки неизвестных коэффициентов модели регрессии, чьи случайные ошибки подвержены явлениям гетероскедастичности или автокорреляции, не будут удовлетворять теореме