26. Линейная модель множественной регрессии
26. Линейная модель множественной регрессии
Построение модели множественной регрессии является одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.
Модель множественной регрессии строится в том случае, если коэффициент множественной корреляции показал наличие связи между исследуемыми переменными.
Общий вид линейной модели множественной регрессии:
yi=?0+?1x1i+…+?mxmi+?i,
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
?0…?m – неизвестные коэффициенты модели множественной регрессии;
?i – случайные ошибки модели множественной регрессии.
При построении нормальной линейной модели множественной регрессии учитываются пять условий:
1) факторные переменные x1i…xmi – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии ?i;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т.е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: ?i~N(0, G2).
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y=X* ?+?,
Где
– случайный вектор-столбец значений результативной переменной размерности (n*1);
– матрица значений факторной переменной размерности (n*(m+1)). Первый столбец является единичным, потому что в модели регрессии коэффициент ?0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности ((m+1)*1);
– случайный вектор-столбец ошибок модели регрессии размерности (n*1).
Включение в линейную модель множественной регрессии случайного вектора-столбца ошибок модели обусловлено тем, что практически невозможно оценить связь между переменными со 100-процентной точностью.
Условия построения нормальной линейной модели множественной регрессии, записанные в матричной форме:
1) факторные переменные x1j…xmj – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии ?i. В терминах матричной записи Х называется детерминированной матрицей ранга (k+1), т.е. столбцы матрицы X линейно независимы между собой и ранг матрицы Х равен m+1<n;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) предположения о том, что дисперсия случайной ошибки модели регрессии является постоянной для всех наблюдений и ковариация случайных ошибок любых двух разных наблюдений равна нулю, записываются с помощью ковариационной матрицы случайных ошибок нормальной линейной модели множественной регрессии:
где
G2 – дисперсия случайной ошибки модели регрессии ?;
In – единичная матрица размерности (n*n).
4) случайная ошибка модели регрессии ? является независимой и независящей от матрицы Х случайной величиной, подчиняющейся многомерному нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: ??N(0;G2In.
В нормальную линейную модель множественной регрессии должны входить факторные переменные, удовлетворяющие следующим условиям:
1) данные переменные должны быть количественно измеримыми;
2) каждая факторная переменная должна достаточно тесно коррелировать с результативной переменной;
3) факторные переменные не должны сильно коррелировать друг с другом или находиться в строгой функциональной зависимости.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
9. Общая модель парной (однофакторной) регрессии
9. Общая модель парной (однофакторной) регрессии Общая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.Регрессионным анализом называется
10. Нормальная линейная модель парной (однофакторной) регрессии
10. Нормальная линейная модель парной (однофакторной) регрессии Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):yi=?0+?1xi+?i,где yi– результативные переменные, xi – факторные переменные, ?0, ?1 – параметры
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера В общем виде линейную модель множественной регрессии можно записать следующим образом:yi=?0+?1x1i+…+?mxmi+?i, где yi – значение i-ой результативной переменной,x1i…xmi – значения факторных
28. Линейная модель множественной регрессии стандартизированного масштаба
28. Линейная модель множественной регрессии стандартизированного масштаба Помимо классического метода наименьших квадратов для определения неизвестных параметров линейной модели множественной регрессии ?0…?m используется метод оценки данных параметров через
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для
33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
33. Коэффициент множественной корреляции. Коэффициент множественной детерминации Если частные коэффициенты корреляции модели множественной регрессии оказались значимыми, т. е. между результативной переменной и факторными модельными переменными действительно
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.Основная гипотеза состоит в предположении о незначимости
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии
46. Проверка гипотезы о значимости нелинейной модели регрессии. Проверка гипотезы о линейной зависимости между переменными модели регрессии На нелинейные модели регрессии, которые являются внутренне линейными, т. е. сводимыми к линейному виду, распространяются все
65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена
65. Обобщённая модель регрессии. Обобщённый метод наименьших квадратов. Теорема Айткена МНК-оценки неизвестных коэффициентов модели регрессии, чьи случайные ошибки подвержены явлениям гетероскедастичности или автокорреляции, не будут удовлетворять теореме