128

We use cookies. Read the Privacy and Cookie Policy

128

более критичен контроль за температурой газов на выходе из двигателя.

При полете с малой скоростью на полной тяге можно легко расплавить сопло турбины! Читаем документацию и следим за тем, чтобы не выйти за ограничения…

В ответ на полностью выжатый вперед РУД классический реактивный двигатель сначала призадумается, а потом начнет все громче и пронзительнее свистеть. Этот шум превратится в тягу лишь очень неспешно, по мере набора самолетом скорости. Но зато чем выше будут обороты двигателя, тем сильнее начнет прирастать мощность.

В отличие от оборотов турбины, огонь в камерах сгорания разгорается мгновенно и жарко, повинуясь малейшему сдвигу рычага. Поэтому при движении РУДом вперед или назад смотреть надо в первую очередь на термометр, и только потом на тахометр. Зато когда турбина раскручена, малейшее движение РУДа будет выдавать намного больший диапазон тяги. В результате пилоты реактивных машин привыкают к очень короткому и экономному перемещению этого рычага - заранее зная, что на скорости даже совсем небольшое движение руки приведет к заметному ускорению или замедлению полета.

Обычно тяга двигателя в полете варьируется в пределах 50-70%, при этом обороты составляют 70-100%. Изменение тяги следует за оборотами как будто прицепленное на мягкой резинке - сначала растет температура, потом турбина начинает вращаться все быстрее и уже только потом мотор начинает «тянуть». Зато при уменьшении оборотов соотношение между ними и тягой гораздо более линейно - даже температура снижается довольно быстро. Но все равно пилот реактивной машины привыкает настраивать двигатель на нужный режим и оставлять его в покое как можно дольше.

Разгон реактивных самолетов выглядит не так, как у поршневых.

Вместо выжимания РУДа до упора вперед, нужно двигать его понемногу, постепенно уменьшая интервал, все время контролируя температуру и обороты. Сразу после взлета, когда стрелки термометра и тахометра дойдут до упора, надо немедленно начинать набор высоты и скорости, или убрать РУД назад! Помимо опасного перегрева, поток воздуха может легко снести шасси и закрылки, да и сама машина быстро окажется на грани максимально допустимой на малой высоте скорости.

Поскольку уменьшение тяги более линейно и управляемо, чем ее увеличение, при работе с турбиной управление скоростью полета достигается торможением, а не разгоном. Поэтому важнейшим атрибутом реактивного самолета является воздушный тормоз - он позволяет дозированно сбрасывать излишек скорости, не трогая двигатель. Пилоты порш129 невых самолетов обычно стараются подтянуть, добавляя немного тяги и тут же сбрасывая ее избыток. Пилоты реактивных машин сначала разгоняются, а потом весь остаток полета стараются затормозить до нужной скорости, не проскочив ее.

Пока механизация крыла убрана, самолет очень обтекаем и разгоняется даже в очень небольшом пологом пикировании. Но стоит выпустить закрылки и предкрылки, как вся машина сначала «вспухнет», останавливаясь в небе, а потом стремительно посыпется на землю, парашютируя. Остановить это падение можно только дачей тяги, а приемистость мала. Поэтому снижаться придется по строго выбранному режиму, не играя РУДом, и очень аккуратно двигая ручкой на себя.

Пробуем проходы вдоль полосы на предельно малой высоте. Хотя мы летим не так уж быстро, ощущение от скорости совершенно другое - кабина очень «выпуклая» и находится на носу машины. В результате создается ощущение, что несешься буквально вперед головой. На посадке из-за этого вернется старая болезнь высокого выравнивания - придется лечить. А после этого отличная механизация крыла поспособствует касанию с чрезмерно задранным носом - снова придется корректировать свои привычки.

После сравнительно легких учебных машин, познавательно будет познакомиться с реактивными истребителями первого поколения - Gloster Meteor, Lockheed Shooting Star, Messerschmitt Schwalbe, DH Vampire, МиГ-9 или Як-23. Это довольно быстрые и тяжелые машины, с весьма пожароопасными двигателями и слабоватой механизацией крыла.

Ради сохранения приемистости придется постоянно держать чуть повышенные обороты и приземляться на избыточно высоких скоростях. Глиссада получится пологой, развороты размашистыми, а движения РУДом - очень осторожными и выверенными.

Особенностью любого воздушно-реактивного двигателя является его зависимость от плотности воздуха. Высотные и скоростные машины продемонстрируют эту зависимость особенно наглядно: при подъеме тяга будет уменьшаться относительно плавно, становясь вдвое меньше на высоте около десяти километров. После этого падение эффективности станет пропорциональным плотности окружающего воздуха, а на высоте около двадцати километров тяга упадет примерно в десять раз.

По мере разгона, реактивный двигатель развивает все большую мощность, но ближе к 600-700 километрам в час происходит заметный провал. При дальнейшем ускорении тяга вновь нарастает, достигая максимума на околозвуковой скорости. После чего, в силу специфики работы компрессора двигателя, мощность резко падает, а расход топлива так