НАУКА И ТЕХНИКА — ДЛЯ ЖИЗНИ

We use cookies. Read the Privacy and Cookie Policy

НАУКА И ТЕХНИКАДЛЯ ЖИЗНИ

Над тремя загадками природы, каждая из которых открывает окно в новый мир, работают сейчас ученые земли.

Первая из них — космос, вторая — строение атомного ядра, третья — загадка сущности жизни.

Еще не так давно люди знали о трех элементарных частицах: протоне, электроне и нейтроне. В настоящее время открыто уже 16 элементарных частиц и примерно столько же античастиц. Это уже известные нам электрон, протон и нейтрон, а также позитрон, мезон, гиперон и другие.

Для дальнейшего подразделения к названиям основных частиц прибавляются греческие буквы: пи, кси, сигма, лямбда. В некоторых названиях указывается и знак электрического заряда частицы, например, «нейтральный лямбда-гиперон, или «пи-минус мезон».

Если в число элементарных частиц включать еще и очень «короткоживущие», то общее число известных в наше время частиц достигнет 40. Этим доказывается научное положение о неисчерпаемости атома.

В прошлом между научным открытием и его практическим применением проходили десятки и даже сотни лет. Так, со времени открытия электрического тока до его первого использования в практике человека прошло почти полстолетия. Насколько быстрыми, поистине семимильными шагами двигается современная наука, видно из следующего факта: с момента открытия деления ядер урана до постройки первого ядерного реактора прошло немногим более трех лет.

Чтобы безошибочно предсказать погоду на будущее, надо знать ее сегодняшнее состояние на огромных территориях земли. Метеорологи, по существу, никогда не располагали достаточными для этого данными. Предмет изучения метеорологической науки — вся планета с окружающим ее пространством. Значит, и методы исследования должны соответствовать глобальному характеру самой атмосферы. Но как это сделать? Ответ дал успешный запуск первого советского искусственного спутника Земли. Вслед за ним на орбиты вышли космические научные лаборатории, запущенные в нашей стране и США.

Впервые в истории ученые получают возможность наблюдать за метеорологическими процессами в мировом масштабе. Прежде всего это относится к изучению облаков. До сих пор метеорологи смотрели на них снизу. Теперь с помощью фотокамер они могут наблюдать их сверху, из космоса. А как известно, характер и распределение облачности многое говорят метеорологам о движении воздушных масс, образовании циклонов, антициклонов, штормов. В зарубежной печати сообщалось, что по фотоснимкам облаков, переданным со спутника, удалось обнаружить сильный ураган в Тихом океане за два дня до того, как синоптики «нашли» его по данным наземных наблюдений.

Не меньшее практическое значение имеют исследования лучистой энергии, проводимые со спутников. По температуре облаков приблизительно вычисляется их высота, а это ценная информация для экипажей больших пассажирских самолетов, отправляющихся в ночной рейс.

Но и это не все. В результате поглощения солнечной радиации земной поверхностью на ней возникают так называемые «горячие» пятна. Наблюдения за ними из космоса помогут заблаговременно определять районы, в которых ожидаются грозы и другие разрушительные стихийные явления. Или представьте себе спутник, снабженный радарной установкой. Он будет регистрировать районы с осадками, их географические и «вертикальные» границы и даже различать, идет дождь, снег или град…

Разрабатываются проекты создания мировой службы погоды. В печати уже сообщалось о переговорах советских и американских ученых, во время которых была достигнута договоренность о совместном использовании спутников Земли для метеорологических исследований.

Благодаря спутникам метеорологическая служба будет ежедневно располагать подробными сведениями о погоде на всем земном шаре.

Превращение одного грамма легкого, неустойчивого дейтерия в более устойчивый гелий выделяет в 10 миллионов раз больше энергии, чем сгорание грамма угля. А энергия для человека — это все: свет, тепло, питание, изобилие в конечном счете. Понятно поэтому стремление ученых овладеть управляемой термоядерной реакцией, заставить ее работать на человека во всех отраслях народного хозяйства.

В отделе сверхвысоких ускорений конструкторского бюро Мосгорсовнархоза создана ультрацентрифуга, ротор которой делает 65 тысяч оборотов в минуту. Копейка, в обычных условиях весящая один грамм, в скоростной центрифуге становится в 300 тысяч раз тяжелее. За работой ультрацентрифуги следят электронные приборы. Новая машина нужна физикам, химикам, медикам. Она помогает проникать в тайны строения материи, создавать новые пластические массы, исследовать причины тяжелых заболеваний.

Управление плазмой — веществом, нагретым до температуры в несколько миллионов градусов, сделает человека еще более могущественным. Уже сейчас ученые— создатели межпланетных космических кораблей разрабатывают проекты плазменных ракетных двигателей. С их помощью можно будет завоевать околосолнечное пространство и реально говорить о полетах к звездным мирам Овладение плазмой позволит человечеству получать огромные количества энергии и расходовать их по усмотрению на свои нужды.

Более десяти лет ведут ученые исследования плазмы. Были созданы мощные термоядерные установки, в которых физики магнитным полем пытались удержать плазму— этот хаос ионизированных частиц — ионов и электронов. Плазма как бы «раздвигала» силовые линии магнитных полей и «выбрасывалась» за стенки установок, где сейчас же и остывала. При этом раскрыть характер происходивших в плазме явлений не всегда удавалось. Среди физиков, которые работали в лабораториях плазменных исследований, родился термин «неустойчивость плазмы».

И вот эта неустойчивость побеждена! В марте — апреле 1963 года в отделе плазменных исследований Института атомной энергии имени И. В. Курчатова группа советских ученых — М. С. Иоффе, Ю. Т. Байбородов, Р. И. Соболев, В. М. Петров — на плазменной установке ПР-5 получила устойчивую плазму, температура которой приблизилась к 40000 000 градусов.

Установка ПР-5—своеобразная «магнитная бутылка», в которую заключена плазма. 8 магнитных катушек создают поле вдоль оси цилиндра, а линейные проводники— магнитное поле, возрастающее по радиусу. Сложение двух полей и делает стенки «магнитной бутылки» чрезвычайно прочными.

В марте и апреле плазма жила в установке сотые доли секунды, но уже ясно, что можно продлить ее существование до десятых долей секунды. А это очень Много. Достаточно сказать, что в будущем термоядерном реакторе, который станет служить людям для получения энергии, плазма с температурой более 50 миллионов градусов будет загораться на несколько секунд.

Итак, одна из трех трудностей преодолена, а именно — высокие температуры уже получены. Следующие этапы — повышение плотности плазмы в тысячи и десятки тысяч раз и дальнейшее продление ее жизни. За рубежом сообщение об экспериментах с плазмой в марте-апреле 1963 года определили как «сенсацию номер 1 в физике».

«Кибернетическими помощниками человека» заслуженно называют электронные вычислительные машины. В наш век грандиозной технической революции буквально во всех отраслях техники требуются многочисленные и всесторонние расчеты высокой точности.

С помощью вычислительных машин, например, после запуска космической ракеты сразу же, в течение примерно первого часа, уточняется ее траектория. А если бы эти расчеты велись «вручную», то для того, чтобы рассчитать траекторию, потребовалось бы около года.

В ряде проблем физики, строительной механики, в самолетостроении приходится решать уравнения с большим числом неизвестных. Для того, чтобы, скажем, решить систему уравнений с 40 неизвестными (а в действительности приходится решать гораздо более сложные системы с сотнями неизвестных), нужно произвести около пятидесяти тысяч делений, умножений, вычислений, сложений. Человеку потребовалось бы для этого не менее 50 рабочих дней, то есть почти 2 месяца. А ведь при проектировании новых объектов приходится просчитывать десятки вариантов. Эта работа, таким образом, становится практически неосуществимой. Приходится идти на грубые упрощения расчетов, вводить излишние большие запасы прочности, то есть перерасходовать материалы, увеличивать вес. Что это значит, например, для самолета, каждому понятно. А такая вычислительная машина, как БЭСМ, делает необходимые расчеты всего лишь за 10–15 секунд!

Есть все основания ожидать, — пишет академик А. А. Дородницын, — что уже в ближайшие десять лет электронные вычислительные машины станут таким же обычным явлением, как сейчас арифмометр или логарифмическая линейка.

Коллективом инженеров и математиков под руководством академика С. А. Лебедева сконструирована новая быстродействующая вычислительная машина М-20. Ее лаконичное название говорит о том, что она способна совершать двадцать тысяч операций в секунду! Она в три раза быстрее своей предшественницы БЭСМ, а по своим габаритам в несколько раз меньше ее.

Чтобы представить себе поистине фантастическую скорость нового электронного вычислителя, следует учесть, что результат, который человек может получить с помощью электрического арифмометра за 10 лет, работая по 24 часа в сутки, машина достигает за один час.

Советские ученые настойчиво работают над тем, чтобы облегчить труд рабочего, создать такие механизмы, с помощью которых, затрачивая меньше физических усилий, можно выпускать больше продукции. И каждое достижение ученых в этом направлении приносит огромную пользу народному хозяйству.

Интересна в этом отношении установка, сконструированная в Харьковском политехническом институте. Она предназначена для программного управления крупными металлорежущими станками. На таких станках обрабатываются детали весом в несколько тонн. От рабочего требуется большое напряжение, сноровка, умение. Сработал неточно — брак. Огромные убытки для завода и в металле, и в деньгах. Как быть? И в институте решили: надо обрабатывать детали специальными механизмами. После долгих поисков и экспериментов было найдено, что это можно сделать при помощи обычной магнитной ленты, той самой ленты, которая хорошо знакома всем по магнитофону.

Программа работы станка, то есть технологический процесс, составляется в виде цифрового кода и вводится в электронно-вычислительную цифровую машину. Электронная машина превращает цифры в определенные электрические импульсы и записывает их на магнитную ленту. Затем эта лента вставляется в специальное приспособление, которое «читает» запись, преобразуя электрические импульсы в механические перемещения и приводит станок в движение.

Но ведь детали бывают различные. Одни имеют выпуклую поверхность, другие — вогнутую. Не создавать же для обработки каждой детали специальную установку? Для этого ученые устроили в ней так называемый узел «памяти». Он действительно хранит в своей «памяти» сделанные заранее расчеты отклонений от прямой линии. Если деталь имеет какие-то выпуклые или вогнутые поверхности, это отражается на составлении программы работы станка в виде цифрового кода. При попадании же цифрового кода в устройство, узел «памяти» сам решает, каким расчетом воспользоваться, чтобы обработать деталь с криволинейной поверхностью. Эти технологические изменения будут записаны на магнитную ленту… и режим работы станка соответственно также изменится.

Установка, созданная учеными, не лабораторная, а промышленная. Она повышает производительность вальцетокарных станков в два-три раза.

Электронно-вычислительная машина «Киев», находящаяся в вычислительном центре Академии наук Украинской ССР, регулировала из столицы Украины работу агрегата на Славянском содовом комбинате, в 630 километрах от Киева.

Представьте себе машинописное бюро без машинисток. Вы садитесь к микрофону, диктуете текст, и машинка печатает на бумаге.

Но если возможно такое, то, значит, человек словесными сигналами может заставить машину выполнять его приказание, значит, он может «разговаривать» с машиной. Да, все это реально, заявляют ученые. В Москве, Киеве, Тбилиси научные коллективы уже изучают возможности более «тесного» общения человека с машиной. В Московском институте автоматики и телемеханики удалось, например, осуществить идею молодого математика Э. Бравермана, предложившего своеобразный курс обучения машины зрительным образом.

Грузинские ученые занимаются другим, не менее перспективным направлением автоматики. Они учат механизмы понимать речевые сигналы человека. В качестве простейшей из таких «понимающих» машин создана тележка, которой можно управлять привычными нам командами: вперед, влево, быстро и т. д. Интересно, что приемное устройство машины, настроенной на определенный голос, не повинуется голосу другого тембра.

Пока еще ограничен запас сведений (команд), которые различает машина. Но ученые — на верном пути. Разработка системы управления машиной при помощи речевых сигналов совершит подлинную революцию в автоматике. Можно будет устно вводить данные в вычислительную машину, оперативно управлять производственными процессами при помощи речевых команд, автоматически различать людей по их голосам, осуществить автоматическое печатание произносимой речи.

Наука и техника вплотную подошли к решению проблемы внедрения электронно-счетной кибернетической техники в область человеческого общения, в область языка. Первые машины-переводчики, созданные в 50-е годы по заданной программе, самостоятельно переводили математические тексты с русского языка на английский и с английского на французский и русский.

Составление программ для переводных машин — дело сложное. При машинном переводе слова, а также особенности грамматической структуры языка зашифровываются цифрами, из которых составляются фразы. И фразы эти предстают в форме сплошного длинного многозначного числа, состоящего порою из многих тысяч цифр! Они легко и быстро читаются машиной, которая работает по заданной программе вычислений, состоящей из алгоритмов. Алгоритм представляет собою цифровое кодирование всех лексических (словарных) и грамматических особенностей языка.

Вот уже длительное время в Ленинградском университете разрабатываются алгоритмы для 17 языков, в том числе для ряда восточных. Наряду с этим изучается и разрабатывается еще одна, совершенно новая проблема машинного перевода. Дело в том, что для облегчения программирования и перевода с одного языка на другой ученые решили создать специальные языки-посредники. Машина сначала будет переводить текст на язык-посредник, а с него — на любой другой. При таком методе для перевода с 20 языков (или на 20 языков) понадобится уже не 380 программ, как при непосредственном переводе, т. е. без языка-посредника, а только 40.

Можно ли проэкзаменовать двадцать учащихся за 20 минут? Конечно, скажете вы, но при условии, что опрос будет вести столько же преподавателей. А если экзаменатор только один?

Оригинальное кибернетическое устройство, предназначенное для проверки готовности слушателя к выполнению лабораторных работ, создано киевскими инженерами. Внешне прибор напоминает пишущую машинку.

«Кибернетический экзамен» начинается с получения учащимися карточки, состоящей из четырех вопросов. Ответить на каждый из них можно, набрав на приборе несложным кодом определенное число. Преподаватель лишь следит за выходным устройством автомата. Если там вспыхнули четыре лампочки, это значит, что на все вопросы дан верный ответ.

Регулярно, дважды в сутки, к берегу океана подходит волна прилива. Обладая огромной энергией, она неудержима в своем наступлении. Уровень воды поднимается на несколько метров. Мощность же прилива определяется колоссальной цифрой — 1 миллиард киловатт.

Проблема использования энергии прилива давно занимает ученых и инженеров. Создаются проекты приливных электростанций. Разработаны они и в нашей стране.

В 1963 году решено начать строительство первой в Советском Союзе Кислогубской ПЭС. Это — экспериментальная приливная электростанция. Она будет сооружена на Кольском полуострове в губе Кислой. В 1965 году станцию намечено ввести в эксплуатацию.

В ходе сооружения ПЭС строители проверят предложенный инженерами способ сооружения приливных электростанций из наплавных блоков. Такие блоки будут строиться вблизи какого-либо индустриального центра, а затем морем транспортироваться к месту установки.

Красноярская ГЭС будет почти в сто раз мощнее первенца гидростроения — Волховской ГЭС. Каждый из ее 12 агрегатов станет работать за Днепрогэс.

Высота плотины Красноярской ГЭС—130 метров, длина 1 060 метров. Пятьсот кубометров воды в секунду будет поступать на рабочее колесо каждого агрегата. Это равно стоку такой большой реки, как Дон.

Машинный зал станции займет площадь 12 тысяч квадратных метров. Красноярская ГЭС будет автоматизированным и телеуправляемым предприятием, она даст стране 10 миллиардов киловатт-часов электроэнергии в год.

На высоте около пяти тысяч метров, в вечных горных ледниках Памира, берут начало бурные горные реки Вахш, Пяндж… питающие своими водами Аму-Дарью, могучую Аму.

Бывали времена, когда дикий Вахш, выходя из берегов, сметал и разрушал все на своем пути, принося горцам вместо счастья бедствия.

По воле Коммунистической партии Советского Союза эти реки украсятся каскадом мощных электростанций.

Уже сооружается среднеазиатский гигант энергетики — Нурекская ГЭС мощностью 2,7 миллиона киловатт.

Плотина Нурекской ГЭС будет самой высокой в мире — 300 метров.

Следом за ней выше по Вахту поднимутся мощные плотины Рогунской, Оби Шурской, Пастаканской, Сичирагской гидроэлектростанций. Общая мощность Вахшского каскада достигнет семи миллионов киловатт.

Мощность Дашти-Джумской (Пянджской) ГЭС, по предварительным подсчетам, определена в пять миллионов киловатт.

Себестоимость киловатт-часа составит всего лишь 26 тысячных копейки.

Дешевая энергия поднимет к жизни весь бассейн Аму-Дарьи и сделает его богатейшей житницей страны.

В шести километрах выше старой Асуанской плотины на Ниле, в Объединенной Арабской Республике, строится при активной помощи Советского Союза грандиозное сооружение — плотина в 111 метров высотой и шириной по гребню 30 метров. Водохранилище, образованное водами Нила, позволит оросить дополнительно 650 тысяч гектаров земли, то есть увеличить посевные площади на треть! Кроме того, будет дана вода для поливов еще около 300 тысяч гектаров. На этих землях можно будет снимать два-три урожая в год.

При плотине создается гидроэлектростанция мощностью 2 миллиона 100 тысяч киловатт с годовой выработкой электроэнергии девять с половиной миллиардов киловатт-часов.

Как только не называют Асуанскую плотину: и «восьмым чудом света», и «плотиной жизни», и «плотиной против голода и болезней», и «песней свободы в Азии и Африке». Но у плотины есть еще одно название. Асуан — огромная школа, наверное, самая большая в мире. В ней учится более 25 тысяч арабских рабочих. Около полутора тысяч советских специалистов передают им свои знания и опыт.

В мире в среднем на одного человека приходится всего лишь 0,1 киловатта электроэнергии. Если бы выработка электроэнергии во всех странах мира возрастала такими же темпами, как в Советском Союзе, то к 2000 году количество ее на каждого человека можно было бы увеличить более чем в 50 раз.

Луч света, направленный на крохотную чашечку весов, оказывает на нее давление: стрелка отсчитывает на шкале цифры с точностью до одной миллионной доли грамма. Эти электронные аналитические весы, созданные в Ленинграде, экспонировались на Выставке достижений народного хозяйства и были отмечены дипломом.

Сейчас ленинградские приборостроители создали новые аналитические ультрамикровесы, которые способны производить сверхточное взвешивание — до одной стомиллионной доли грамма. «Груз», который взвешивается на этих весах, можно увидеть лишь под микроскопом. Это самые точные весы в нашей стране.

Одну стотысячную калории может зарегистрировать прибор, созданный сотрудниками Института физики Академии наук Грузии О. Приваловым. Новый прибор — дифференциальный микрокалориметр — входит в комплекс уникальной аппаратуры, сконструированной грузинскими биофизиками для исследования белка.

Процессы внутри белковых молекул сопровождаются поглощением и выделением ничтожного количества энергии. Однако измерить эту энергию до сих пор не удавалось. Новая аппаратура позволила грузинским биофизикам впервые получить точные экспериментальные данные сб энергетике внутримолекулярных процессов.

Их называют по-разному: «летающими автомобилями», «воздухоходами», «аэроходами», «земнолетами» и даже «ползолетами». Есть, однако, одно общее во всех этих названиях: и катера, и автомобили, и вездеходы — «летающие», «воздушные», и это правильно.

В отличие от обычных катеров и автомобилей, поездов и тракторов аппараты на воздушной подушке передвигаются не по поверхности, а над ней. Уже построена бело-синяя двенадцатитонная «Нева»— семнадцатиметровой длины судно с двумя пассажирскими салонами на 38 мест. Два вентилятора, приводимые в движение авиационными двигателями, ежесекундно нагнетают в камеру под дном катера 110 кубических метров воздуха. Корабль легко парит на высоте 7–8 сантиметров над водой. Еще один авиамотор вращает винт, установленный на корме, и заставляет катер мчаться со скоростью около шестидесяти километров в час.

Но как повыше поднять машину над землей, чтобы улучшить ее вездеходность? Для этого надо, образно говоря, надеть на воздушную подушку наволочку, чтобы уменьшить утечку воздуха.

Одно из наиболее многообещающих решений — заключить воздух в стенки из… воздуха. Для этого на пути у мощного воздушного потока, идущего от вентилятора, устанавливают преграду. Теперь воздух не поступает прямо в камеру, а направляется в кольцевое сопло — узкую щель, расположенную по наружному обводу дна аппарата, и вырывается из него с большой скоростью. Воздушная завеса, образуемая кольцевым соплом, ограждает область повышенного давления, замедляет утечку воздуха из подушки.

По этой схеме построили свою «Радугу» сормовские судостроители. Их пятиместный катер набирает скорость более ста километров в час. Он поднимается на 10–15 сантиметров над водой. Один авиационный двигатель с помощью вентилятора нагнетает воздух для подушки, другой вращает воздушный винт, придающий катеру поступательное движение.

«Нева» и «Радуга» легко проходят над отмелями, они могут выйти на отлогий берег. И все же их стихия — вода, полет над водой. Они приспособлены для посадки на воду, это «летающие» суда.

А как же с «летающими» автомобилями? Один из них создан тоже в Горьком, на автомобильном заводе, на базе обычной колесной «Чайки». Впрочем, у «летающей» есть колеса. В этом ее отличие от зарубежных автомобилей на воздушной подушке. Горьковская машина может мчаться, как обычный автомобиль, на колесах со скоростью до 120 километров в час. Но вот лента асфальта оборвалась. Впереди болото. «Чайка» убирает колеса в крылья. Двигатель переключается на два вентилятора (кстати, двигатель у нее от серийной машины, обычный 180-сильный). И вот уже «Чайка» в воздухе. Машина движется со скоростью 30 километров в час на высоте 20–25 сантиметров.

Недалек тот день, когда появятся и первые поезда на воздушной подушке, предсказанные Циолковским. Правда, для их движения понадобится специальная дорога. Но зато скорость их — 300–400 километров в час. На воздушную «смазку» толщиной всего несколько миллиметров будет опираться не весь аппарат, а особые колодки, скользящие по рельсам.

Красноярский мост через великую сибирскую реку Енисей длиной 2 300 метров поражает своей простотой, изяществом, хотя и является сложнейшим инженерным сооружением. Здесь впервые в практике мостостроения применен сборный железобетон для перекрытия больших пролетов. Арки, которые кажутся ажурными, невесомыми, на самом деле очень тяжелы — каждая весит 3 200 тонн.

Интересно, что монтировались эти арки на плаву деталями-полусводами весом по 1 600 тонн. Каждый такой полусвод был установлен на 144 понтонах. От мостостроителей потребовалось исключительное умение и мужество при монтаже моста, и они с честью выдержали это испытание.

Красноярский мост — новое слово в мостостроении. Проектировщики и специалисты, сооружавшие его, удостоены Ленинской премии.

Коллектив Усть-Каменогорской лаборатории Казахского филиала Академии строительства и архитектуры СССР разработал новый вид бетона, который обладает высокими защитными свойствами от рентгеновского излучения. В его состав входят шлаки, получаемые из руд свинцово-цинкового производства.

Противорентгеновский бетон прошел промышленные испытания и получил высокую оценку специалистов. Его можно применять на строительстве медицинских учреждений, лабораторий и т. д.

Гиперболоид инженера Гарина, описанный в научно-фантастическом романе А. Толстого, становится реальностью. Советскими учеными изготовлен оптический квантовый генератор, действующий по принципу организованного молекулярного излучения света. Луч квантового генератора почти не рассеивается на расстоянии. Так, если световой пучок, выходящий из такого генератора, направить на Луну, то мы увидим на ней зайчик диаметром в 5 километров.

Пучок света диаметром в один сантиметр достигает по выходу из генератора мощности в 10 тысяч ватт. Если такой пучок собрать с помощью линз в светящуюся точку, то в ней будет сосредоточена мощность около ста миллионов ватт. В тысячные доли секунды луч квантового генератора «прожигает» тончайшие отверстия в материале любой твердости — стали, корунде, алмазе.

Атомоход «Ленин» заложен 5 октября 1956 года, а спущен на воду 5 декабря 1957 года.

Водоизмещение корабля 16 тысяч тонн; длина — 134 метра; ширина —27.6 метра; наибольшая осадка — 9,2 метра; мощность — 44 000 лошадиных сил; скорость хода на чистой воде— 18 узлов. На атомоходе работают три взаимно заменяющих друг друга атомных реактора.

Атомный гигант имеет три специально созданных электродвигателя: два бортовых мощностью до 9 800 лошадиных сил и средний, или центральный — в 19 600 лошадиных сил.

Так называемые усилия упора, создаваемые агрегатами корабля, равны 330 тоннам. Ледокол может идти непрерывным ходом во льдах толщиной до 2–2,5 метра.

При строительстве корабля электрики уложили свыше 700 километров электрического кабеля, установили до 500 электромоторов различной мощности.

На каждой лопасти гребного винта атомохода «Ленин» можно свободно разместить целый пионерский отряд. Перо руля корабля весит более 30 тонн.

29 октября 1962 года вступила в строй линия электропередачи Волгоград — Донбасс, работающая на постоянном токе. Протяженность магистрали 473 километра, напряжение 800 тысяч вольт.

Опыт строительства и эксплуатации уникального сооружения поможет в создании сверхдальних линий электропередач под напряжением, превышающим миллион вольт.

На линию Баку — Красноводск в конце 1962 года вышло уникальное сооружение — железнодорожный паром для Каспийского моря, построенный па заводе «Красное Сормово».

Площадь парома-гиганта составляет несколько тысяч квадратных метров. По высоте такой паром равен семиэтажному зданию.

В пятидесяти километрах от г. Алма-Аты на перевале Джусалы-Кезень в Заилийском Ала-Тау расположен на высоте 3 340 метров городок станции по изучению космических лучей физического института имени П. Н. Лебедева Академии наук СССР и института ядерной физики Академии наук Казахской ССР. Это самая высокогорная в Европе и Азии станция по изучению космических лучей.

В Крымской астрофизической обсерватории Академии наук СССР установлен телескоп с диаметром зеркала 2,6 метра, созданный советскими учеными и отечественной промышленностью. В создании самого телескопа, башни с куполом, множества различных механизмов и необходимого технологического оборудования участвовало около 40 крупных предприятий страны. Заготовка зеркала весила свыше пяти тонн. Тонкий отжиг заготовки для снятия внутренних напряжений в стекле производился в течение пяти месяцев. Поверхность стекла обработана в рекордно короткий срок — немногим более полугода. Обработанное стекло весит четыре тонны. Подвижная часть телескопа весит 62 тонны, но она может быть вращаема от руки, благодаря особому устройству подшипников.

Для автоматизации телескопа в нем применено около 160 электрических механизмов. О мощности телескопа можно судить по такому примеру: если на расстоянии, отделяющем Москву от Владивостока (по прямой линии), зажечь спичку, то излучаемый ею свет может быть «пойман» (при отсутствии атмосферы) телескопом. Телескоп может на расстоянии до нескольких миллионов километров следить за полетом космического корабля, взявшего курс на далекую планету.

Телескоп Крымской обсерватории самый крупный в Европе. Качество отображения звезд в телескопе не уступает изображениям, полученным на крупнейшем телескопе мира, находящемся в США, в обсерватории Маунт-Паломар.

Сильнейшие оптические телескопы проникают сейчас в глубь мирового пространства на 4 миллиарда световых лет, а сильнейшие радиотелескопы расширили пределы «видимости» до 10 миллиардов световых лет.

Технический совет в 1960 году одобрил проект уникального телескопа-рефрактора с диаметром главного зеркала 6 метров. 630 тонн — таким будет общий вес этого крупнейшего в мире астрономического прибора, проект которого составлен конструкторским бюро под руководством лауреата Ленинской премии Б. К. Иоаннисиани. Главное зеркало будет весить 40 тонн, а вес всей подвижной части телескопа — 540 тонн.

Одним из лучших в мире радиотелескопов является телескоп Пулковской обсерватории. Его антенну образуют 90 отдельных плоских щитов, установленных на склоне холма по дуге с размахом в 120 метров.

Ученым, раскрывающим тайны звездного неба, во многом помогает молодая наука — радиоастрономия.

К Международному геофизическому году в Англии в Джордрелл Бэнк закончилось строительство самого большого в мире радиотелескопа. С его помощью можно изучать небесные тела, удаленные от нас на многие миллиарды световых лет. Он весит более 2 тысяч тонн, а диаметр его зеркала равен 80 метрам.

По заказу Академии наук ГДР народное предприятие «Карл Цейс» в Иене разработало двухметровый универсальный зеркальный телескоп.

Этот прибор, главное зеркало которого имеет диаметр в 2,08 метра, толщину 32 сантиметра, является по размерам третьим в мире. Однако благодаря более современной конструкции он значительно превосходит американские аппараты, несмотря на то, что диаметр их зеркал больше. В Цейсовском телескопе впервые объединены четыре оптические системы — зеркало Шмидта, зеркало Ньютона, зеркало Кассгрена и система зеркал Куде. Он может быть использован для фотографирования небосвода, спектрографических снимков и для наблюдений.

Сферически отшлифованное главное зеркало, одно охлаждение которого продолжалось 100 дней, позволит фотографировать звезды до 21 звездной величины. Это равносильно тому, если бы кому-либо вздумалось запечатлеть на пленку луч, распространяемый стеариновой свечой на расстоянии 11 500 километров.

В ближайшие годы завод «Карл Цейс» изготовит несколько таких уникальных приборов. Один из них предназначается для Советского Союза.

На Подольском заводе «Микропровод» каплю металла всего в полтора-два грамма вытягивают в трехкилометровую нить, которая вместе со стеклянной изоляцией в семь раз тоньше человеческого волоса. В порядке эксперимента на этом же заводе в 1959 году вытягивали нить диаметром 2,5 микрона. Микропровода применяются в счетно-решающих устройствах, точных электроизмерительных приборах и радиотехнической аппаратуре.

На Каспийском море создан уникальный морской промысел Нефтяные камни. В 110 километрах от Баку выстроен городок на стальных мостах-эстакадах протяженностью свыше 120 километров, а также на отдельных искусственных островках.

На промысле открыто и введено в промышленную эксплуатацию свыше 20 нефтяных и газоносных пластов. Сотни скважин, огромный резервуарный парк, нефтесборные пункты, водоочистные установки, паросиловые электростанции, обширный специализированный флот, десятки жилых домов, культурно-бытовых учреждений и даже цветущий сад — далеко не полный перечень колоссального хозяйства, раскинувшегося в открытом море.

На территории СССР пробурена самая глубокая в Европе скважина — 5 040 метров.

В Прикаспийской низменности и в Азербайджане в 1961 году начаты бурением скважины с расчетом достижения глубины в семь километров.

Для получения общего представления об основных слоях, слагающих земную кору, в нашей стране намечено заложить сверхглубокие скважины в 10, 12, 15 и даже 18 километров. Из них первая будет буриться в Карелии, вторая — на Урале, третья в Прикаспийской низменности, четвертая — в Азербайджане, пятая — на Курильских островах.

Нужно сказать, что в скважине на глубине 15–18 километров возможна температура до 500 градусов по Цельсию выше нуля и давление порядка нескольких тысяч атмосфер.

Газопровод Газли — Урал прокладывается через пустыню Кызыл-Кум, реку Аму-Дарью, проходит по оконечности Заунгузских Кара-Кумов, через Хорезмский оазис по плато Усть-Урт, через пески и степи Казахстана, отроги Мугоджарских гор, оренбургские степи и предгорья Южного Урала до склонов Уральских гор. Две нити труб диаметром каждая в метр протянутся на 2 163 километра. По газопроводу будет проходить 21 миллиард кубометров газа в год.

Ленинградский завод электрических часов освоил серийное изготовление печатающих хронографов, предназначенных для измерения времени с точностью до одной пятитысячной секунды.

В СССР построен воздушный лайнер «ИЛ-62», являющий собой новую ступень авиационной техники. Эта реактивная машина конструкции дважды Героя Социалистического Труда, лауреата Ленинской премии С. В. Ильюшина предназначена для беспосадочных рейсов на дальние расстояния (например, Москва — Нью-Йорк). Самолет берет на борт 182 пассажира. Скорость его — 900 километров в час.

От станции Казатин II проложено 60 километров «бархатной дороги». Так железнодорожники называют первую в СССР бесстыковую железнодорожную колею. По этой дороге вагоны катятся мягко и плавно, без обычного перестука колес. На «бархатной дороге» рельсовые стыки соединены не с помощью болтов и накладок, как обычно, а сварены на специальной машине.

Конструкторами Уральского завода тяжелого машиностроения для резки проката крупного профиля спроектированы ножницы-великаны высотой с двухэтажный дом и весом 170 тонн.

Учеными получены нитевидные кристаллы железа диаметром в несколько микрон и длиной в один миллиметр. Они обладают прочностью, которая превышает прочность обыкновенного железа в сто раз!

Рудные концентраты Череповецкого металлургического комбината будут храниться под гигантским железобетонным куполом. Это самое большое в мире хранилище высотой 65 метров. В нем легко мог бы уместиться двадцатиэтажный дом.

В Ташкенте проделан первый опыт отепления жилых помещений естественным теплом Земли. Для теплофикации города используются горячие подземные воды. Горячие водоемы находятся на глубине от 1 800 до 2 000 метров. Скважины дали мощные фонтаны минеральной воды с температурой до 72 градусов тепла.

Разрабатывается проект теплофикации города Махачкалы. Пробуренная неподалеку от него скважина дала фонтан воды с температурой 80 градусов выше нуля.

В ГДР изготовлен подшипник весом 125 тонн. Он представляет собой обод, который охватывает барабан цементной печи и вращается с ним на двух опорных роликах. Диаметр внутреннего кольца — 6 метров.

В Швейцарии выпускают подшипники-малютки с наружным диаметром в 1,1 миллиметра. В подшипнике три стальных шарика диаметром по 0,4 миллиметра. В спичечную коробку можно поместить 34 тысячи таких подшипников.

В Москве, в Останкино, строится 520-метровая, самая высокая в мире, телевизионная башня — «Большая игла». Нижний диаметр ее равен 63 метрам, а верхний — 70 сантиметрам. Башня будет весить 26 тысяч тонн. К ней прикрепляется несколько антенн. Самые верхние предназначены для цветного телевидения.

«Большая игла» при сильных порывах ветра будет иметь отклонение вершины от вертикального положения на 4 метра. Но так как это колебание она совершит не сразу, а за 9 секунд, находящиеся вверху почти не почувствуют воздушной качки. В настоящее время самыми высокими телевизионными башнями, кроме строящейся в Останкино, являются американская высотой 480 метров и японская — 380 метров.

Электронный микроскоп, созданный в 1931–1932 годах, дает увеличение до 100 тысяч раз, а «УЭМВ-100» — универсальный электронный микроскоп, изготовленный специалистами электроавтоматики дает увеличение в 200 тысяч раз. Через него легко просматриваются живые клетки, молекулы всех органических веществ и даже вирусы. Новый прибор находит широкое применение в различных отраслях науки и техники.

Для «УЭМВ-100» пришлось изготовить свыше 2 300 уникальных деталей. Вес самой крупной из них 54 килограмма, самой маленькой — меньше 0,1 грамма.

Созданная коллективом сотрудников Института физики Академии наук СССР сверхскоростная фотоустановка «СФР» дает возможность снимать 2,5 миллиона кадров в секунду.

Чтобы просмотреть столько же кадров в обычном кино, потребовалось бы больше суток, так как на киноэкране за 1 секунду проходит 24 кадра.

«СФР» успевает заснять развернутую картину таких процессов, как искровой разряд, взрыв, горение газов.

Для определения желудочных заболеваний применяют рентгеновское просвечивание, анализ желудочного сока и другие методы, дающие косвенные указания. Но можно поступить проще: постараться заглянуть внутрь желудка и глазом обследовать его слизистую оболочку. Оказывается, для этого нужно сделать немногое — просто больному надо проглотить микрофотоаппарат, который при хороших условиях освещенности заснимет внутренние стенки желудка.

Фотоаппарат, который можно было бы без труда заглатывать, то есть крошечный по величине и удобно обтекаемой формы, подготавливается к выпуску нашей оптической промышленностью.

Советская оптическая промышленность готовит к серийному выпуску так называемую иглу-микроскоп. На острие этой иглы укреплен миниатюрный объектив, а внутри него расположен осветительный аппарат. Введя иглу в тело больного, можно достоверно судить о состоянии пораженной ткани и получить ценные данные как для диагноза, так и для дальнейшего хода операции.

Самая совершенная «думающая» кибернетическая машина — детская игра по сравнению с теми процессами, которые происходят в человеческом мозгу. Инженеры все чаще спрашивают физиологов: «Как работает мозг? Может быть, вы подскажете нам новые пути в создании «думающих» машин?»

Медики и биологи зарисовали в атласах все до одного нервы тела человека и животных; они подсчитали, что нервная система человека состоит из 15 миллиардов клеток! Электрофизиологи научились изучать электрические явления каждого нерва. Но даже самый тонкий нерв — это жгут из многих-многих одиночных нервных волокон. Величина же одной нервной клетки совсем ничтожна — какие-то десятимиллионные доли кубического сантиметра.

Затем были созданы сложнейшие приборы, которые записывают электрические волны головного мозга. Но эти волны — слабый электрический шум миллиардных толп нервных клеток. А можно ли узнать о здоровье человека по шуму и крику гигантской «толпы»?

Физиологи давно мечтали: «Вот если бы можно было «влезть» внутрь одной клетки, пощупать ее сверхчувствительными приборами!»

Но «ворота» в клетку были плотно закрыты. И только в последние годы ученые подобрали к ним «ключ». Им оказалась стеклянная трубочка-капилляр с кончиком толщиной в одну десятитысячную — миллиметра. Физиологи назвали его микроэлектродом.

Микроэлектрод, не повредив клетки, проник внутрь ее и зарегистрировал с помощью сверхчувствительных приборов электрический потенциал между ее поверхностью и внутренним содержанием. Многие ученые в разных лабораториях разных стран установили, что его величина несколько сотых вольта. Но «одна из пятнадцати миллиардов» чрезвычайно сложна.

Микроэлектрод должен выяснить, как и чем отличается клетка головного мозга от спинного, сетчатки глаза, от нервных клеток сердца. А это нелегко. Ведь все пятнадцать миллиардов работают чрезвычайно дружно, как говорится, в тесном контакте. Отросток одной клетки заканчивается «пуговкой», которая касается поверхности следующей.

Ну, а как передаются «сигналы» в месте контакта? Здесь ученые еще не достигли единства. Одни считают, что «бегущий» по нерву электрический потенциал возбуждает следующую клетку. Так думают сторонники электрической теории передачи нервного возбуждения. Другие доказывают, что возбудителем является особое химическое вещество, которое выделяется из «пуговки». В 1958 году в электронный микроскоп при увеличении в 50—100 тысяч раз даже сфотографировали внутри «пуговки» пузырьки, которые лопаются, когда до места контакта доходит «сигнал».

Ключ к клетке найден, наступление на ее тайны продолжается!

В тот час, когда исследователь вселенной впервые вступит на почву Луны, в его распоряжении будет научный анализ рельефа и ландшафта лунного мира.

Первенство исследований в данной области принадлежит нашей Родине и в частности работам ленинградского геолога Александра Васильевича Хабакова, чей новаторский труд «Об основных вопросах истории развития Луны» был опубликован в 1949 году.

Изучая фотографии поверхности ночного светила, Хабаков и его последователи сумели прочесть на них историю разломов и сдвигов, поднятий и опусканий лунной коры… Каждая черточка и морщинка на лунном лике получила интересное объяснение. Например, в районе Луны, отмеченном гигантским скоплением кратеров и расположенном западнее «Моря облаков», удалось проследить линию разлома и предсказать вулканический характер ряда кратеров.

Террасовидные, опускающиеся уступами, наплавлекные края внутренних стенок впадины Альфонс красноречиво говорили о том, во что не верили, отказывались верить многие. Альфонс — действующий лунный вулкан!

3 ноября 1958 года поразительное открытие, сделанное астрофизиком Н. А. Козыревым, — он наблюдал выделение газов из кратера, — подтвердило это предсказание.

В этот день астрогеография отметила свой первый решающий успех и первое боевое крещение.

От Алма-Аты до Фрунзе по прямой 244 километра. Для передачи изображения по телевидению в обычных условиях это слишком солидное расстояние. Тем не менее жители столицы Киргизии регулярно смотрят передачи из столицы Казахстана и наоборот, хотя между этими городами нет ни промежуточных ретрансляционных точек, ни передающего кабеля.

Ученые нашли новый способ увеличить дальность телепередач. Острые края горных вершин служат в качестве естественного отражателя и передатчика ультракоротких радиоволн.

На реке работает необычная гидроэлектростанция: поперек потока с берега на берег переброшен простой трос и на нем нанизаны поперечные турбины, похожие на ведра, разрезанные вдоль. Под напором течения турбины вращают трос и он, работая, как вал, приводит в движение генератор. Электрический ток от генератора питает лампочки.

Это — «гирляндная» гидроэлектростанция конструктора Б. С. Блинова.

Обычно сооружение ГЭС обходится очень дорого: требуются сложные изыскания, надо строить плотины. Да и затопление прилегающей к реке местности невыгодно: под воду уходят урожайные поймы. И вот создана такая энергетическая установка, которую могут построить своими силами колхозники и рабочие совхозов без больших затрат.

«Гирляндная» ГЭС по конструкции очень проста и может быть установлена на самых маленьких реках. Для нее достаточны глубина в 25 сантиметров и скорость течения 1 метр в секунду. Турбины могут с успехом работать и подо льдом. По стоимости «гирляндные»

ГЭС в десятки раз дешевле, чем гидростанция с плотинами. Мощность «гирлянд» различна. Например, на реке Бие спроектирована «гирляндная» электростанция на 250 киловатт, а в колхозе «Родина» под Москвой — на 32 киловатта. Количество турбин может быть увеличено, и благодаря этому возрастет общая мощность установки. Кроме того, «гирляндную» электростанцию легко переставлять с одного места на другое.

Давно мечтают люди оттеснить холод с высоких широт, превратить все континенты в цветущие сады, в область вечного плодоносящего лета, где не будет осени и зимы, морозов и туманов, слякоти и пронизывающей сырости, иссушающего тропического зноя и удушливой жары. Мягкое лето круглый год!

Фантастика? Ничуть не бывало! Вполне реальная перспектива. Надо лишь заглянуть вниз, в недра и, проникнув в них, набросить «узду» на тепловые источники, проложить им дорогу из «преисподней» наверх.

Рекордная глубина, пока что доступная для бурения, равна почти восьми километрам. И каждый новый десяток метров дается с громадным трудом. Препятствие — температура. Непрерывно, по мере погружения, она повышается через каждые сто метров на три градуса. Десять тысяч метров, это по крайней мере, триста градусов. А гигантское давление? О нем тоже не следует забывать.

«Прокладывать буровые скважины на десять и более километров хотя и заманчивое дело, но с ним, видимо, придется потерпеть, — рассказывает директор лаборатории гидрогеологических наук СССР профессор Макаренко. — В первую очередь мы возьмемся за те гидротермы, которые находятся значительно ближе, на глубине одной-трех тысяч метров от поверхности и на расстоянии, вполне посильном для «бегуна на среднюю дистанцию»— турбобура.

За две-три недели турбобур просверлит скважину в земле и оттуда ударит неоскудевающий мощный фонтан кипятка. Горячий фонтан будет бить веками, тысячелетиями, подобно минеральным источникам. Ведь его питает тепло атомного распада — процесса, не прекращающегося в глубинах земли».